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Abstract—Beamforming of received pulse-echo data gener-
ally involves the compression of signals from multiple channels 
within an aperture. This compression is irreversible, and there-
fore allows the possibility that information relevant for per-
forming a diagnostic task is irretrievably lost. The purpose of 
this study was to evaluate information transfer in beamform-
ing using a previously developed ideal observer model to quan-
tify diagnostic information relevant to performing a task. We 
describe an elaborated statistical model of image formation for 
fixed-focus transmission and single-channel reception within a 
moving aperture, and we use this model on a panel of tasks 
related to breast sonography to evaluate receive-beamforming 
approaches that optimize the transfer of information. Under 
the assumption that acquisition noise is well described as an 
additive wide-band Gaussian white-noise process, we show that 
signal compression across receive-aperture channels after a 2-D 
matched-filtering operation results in no loss of diagnostic in-
formation. Across tasks, the matched-filter beamformer results 
in more information than standard delay-and-sum beamform-
ing in the subsequent radio-frequency signal by a factor of two. 
We also show that for this matched filter, 68% of the informa-
tion gain can be attributed to the phase of the matched-filter 
and 21% can be attributed to the amplitude. A 1-D matched 
filtering along axial lines shows no advantage over delay-and-
sum, suggesting an important role for incorporating correla-
tions across different aperture windows in beamforming. We 
also show that a post-compression processing before the com-
putation of an envelope is necessary to pass the diagnostic 
information in the beamformed radio-frequency signal to the 
final envelope image.

I. Introduction

Backscattered ultrasound images rely on the pro-
cess of beamforming to combine responses from an 

array of acoustic transducers into a single rF signal for 
a subsequent envelope computation [1], [2]. The imple-
mentation of beamforming is challenging on a practical 
level because the process occurs in real time at video-rate 
speeds. However, beamforming is also a theoretical chal-
lenge because it is not clear how the many received signals 
should be combined to optimally preserve the diagnostic 

information they contain. Irreversible steps in ultrasonic 
signal acquisition and processing leave open the possibility 
that information may be lost at various points on the way 
to producing a final displayed image. This latter problem, 
finding optimal transforms for processing the received 
echo data, is the subject of this work.

In principle, beamforming encompasses the entire pro-
cess of signal transmission, echo reception, and subsequent 
processing steps up to the computation of an envelope 
image [3]. Here, we will concentrate on the latter stage 
of this process under the assumption of a linear array 
with a single, fixed-focus transmit beam that is received 
over the same aperture at each of the individual receive 
channels. Hence, for the purposes of this study, beam-
forming refers to the processing of received signals into 
a format appropriate for envelope computation. as such, 
beamforming can be thought of as a transformation of 
the received data that inherently employs an irreversible 
compression step in which the many channels of a re-
ceive aperture are combined into a single scan-line signal. 
The standard approach, commonly referred to as delay-
and-sum (ds) beamforming [2], [4], accomplishes this by 
summation across channels after delay correction for the 
path-length to the detector. We consider a more general 
class of beamforming transformations that consist of 1) 
any pre-compression processing (such as delay correction); 
2) the compression step consisting of a sum across receive 
channels; and 3) any post-compression processing of the 
signal applied before envelope detection.

In previous publications [5], [6], we have developed a 
statistical model of ultrasonic image formation that is 
based on the use of a gaussian stochastic process to rep-
resent acoustic reflectivity in the object. a linear trans-
formation of the object reflectivity, based on the pulse 
pressure profile and subsequent additive acquisition noise, 
models pulse-echo image formation [6]. We restrict atten-
tion to the focal region of a fixed-focus pulse, which allows 
us to approximate the system as a noisy convolution with 
a pulse-echo point-spread function (PsF). This model of 
rF acquisition is combined with a panel of simple visual 
tasks related to breast cancer detection and diagnosis to 
evaluate and optimize signal processing. We approach 
this optimization by considering an optimal discriminant 
function, the (log) likelihood ratio, from signal detection 
theory [7]. In imaging tasks, this optimal discriminant is 
referred to as the ideal observer because it performs the 
task and achieves the best possible performance by several 
reasonable measures [8], [9].

Here, we generalize our model of image formation to 
incorporate the formation of individual signals in various 
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receiver channels. This allows us to consider the effect of 
signal processing in beamforming on task performance 
and to analyze the ideal observer for processing strate-
gies that achieve optimal performance. The result is a 
block-matrix system that takes into account the axial 
sampling, lateral position of the aperture, and position 
of the channel within the aperture. one direct conse-
quence of this analysis is the derivation of an optimal 
approach to compressing received signals in a moving 
aperture system. We show that the use of a 2-d matched 
filter in each channel before summation across channels 
is sufficient for computing the ideal observer test statis-
tic, and therefore retains all the diagnostic information 
of the received data.

To evaluate the effect of signal processing in beamform-
ing, we compare the 2-d matched filter (2dMF) beam-
former to standard delay-and-sum beamforming. We also 
consider the role that phase and amplitude play in trans-
ferring information in the matched filter beamformer, 
and this leads us to consider a phase-only matched fil-
ter (PMF) and an amplitude-only matched filter (aMF). 
We also consider the role of axial processing of scan data 
compared with processing across different apertures by 
implementing a 1-d matched filter (1dMF). We evaluate 
performance of these different beamforming approaches in 
five simple visual tasks related to breast cancer imaging 
using a system model based on Field II simulation code 
for acoustic pulse propagation in an incoherent scattering 
medium [10], [11]. This analysis of information transfer 
relies heavily on the notion of statistical efficiency in each 
task as a measure of how much diagnostic information is 
lost from the use of suboptimal processing.

II. Theory

In this section, we expand on the ideal observer frame-
work for ultrasonic signal processing described previously. 
We consider the compression of rF signals from individ-
ual receive channels that are summed over a moving ap-
erture window, a fundamental component of linear-array 
beamforming.

A. System Model for Receive Channel Signals

Fig. 1 is a graphical diagram of the beamforming pro-
cess as used in this work. We consider a single, fixed-focus 
transmit beam that is received over the same aperture 
at each of the individual channels. This process can be 
modeled as an array of PsFs that interact with a scat-
tering object to produce the individual receive channel 
signals (shown in scan converted format). different PsFs 
are needed to account for different relative positions of the 
channels in the receive aperture. Beamforming consists of 
combining the information from these individual channels 
into a single beamformed data set (also shown scan con-
verted) for subsequent envelope detection.

In previous work [5], [12], we have modeled the forma-
tion of rF data as a linear system, H, acting on a vec-
tor, f, representing the scattering profile of the object. In 
principle, f is a continuously defined function of 2 or (more 
appropriately) 3 dimensions. However, because the system 
that acts on it is inherently band limited, it is well approx-
imated for our purposes by a discrete set of sample points. 
We restrict attention to the focal zone of the transmitted 
pulse, where the linear system can be efficiently imple-
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Fig. 1. Model of image formation. The diagram shows the model of image formation from the scattering object to the envelope image. Three element 
channels are shown from a total of 96 with ellipses (∙) indicating the remaining elements. channel point spread functions (PsFs) interact with the 
object scattering function with additive acquisition noise to produce element rF data shown in scan-converted format as images. These are combined 
into a single rF image through the process of beamforming, and then transformed to a final image via Hilbert transform and envelope detection.
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mented as a convolution with the pulse profile, but we 
note that the approach could be extended to shift-varying 
linear system models. The resulting product of the system 
matrix with the object vector is corrupted by noise, n, to 
form the rF data vector, g.

We conceive of a similar process for generating the sig-
nal for each receive channel in an aperture as shown in 
Fig. 1. let a be the index of a channel within the received 
aperture (a = 1, …, A), then a linear system model for the 
received signal of this channel is given by

 g H f na a a= + . (1)

note that in this work, boldface variables represent ma-
trix (uppercase) and vector (lowercase) quantities. We see 
from (1) that each receive channel has its own system ma-
trix, Ha, and its own (independent) vector of acquisition 
noise, na, but the object is common to all channels.

We can assemble the linear systems specified in (1) into 
a single receiver system equation describing all channels 
simultaneously by using block-matrix equations:
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It is important for practical reasons to be aware of the size 
of the system, because this will limit what sorts of opera-
tions can reasonably be used in later steps. The number 
of vector elements in each ga is the number of scan lines 
times the number of samples per scan line, and therefore 
the number of elements in gr is that number times the 
number of channels. For the system we use in the simula-
tion experiments, there are 128 scan lines, 256 samples per 
scan line (concentrated in the focal zone), and 96 receive 
aperture channels for a total vector dimension of 3 145 728 
elements in gr. Because of the inherent band limit of the 
system, we assume that the object can be adequately rep-
resented by the sampling rate of the system, and therefore 
f has a total vector dimension of 32 768. Thus, the block 
system matrix, H, is highly rectangular with almost 2 
orders of magnitude more rows than columns.

For the purpose of evaluating different beamforming 
approaches, we utilize a simplified shift-invariant system 
model intended to approximate the workings of a focused 
pulse echo system. The model uses a convolution with a 
system point spread function (PsF) to implement multi-
plication by the system matrix or receive channel subma-
trices. This allows for rapid computations of products in-
volving the system matrix, and a compact representation 
of the system by the PsF that makes for modest memory 
requirements.

B. Beamforming in the System Model

one role of beamforming is to compress the various 
channel signals into a single rF signal, gBF. If we consider 

a linear signal compression across the channels in (2), we 
can write this as another linear transform

 g BgBF R= , (3)

where B is another rectangular matrix that reduces the 
dimension of the result to the number in each of the indi-
vidual channels. For now this compression transform will 
remain somewhat generic. We consider specific approaches 
to defining B in section II-d.

Because the beamformed rF signal is defined at the 
same sampling rates as the channel signals, the matrix B 
can be thought of as partitioned into square blocks,

 B B B B= [ | | | ].1 2  A  (4)

Eqs. (2)–(4) allow the beamformed data to be written as 
a noisy linear system,

 g H f nBF BF BF= + , (5)

where the beamformed system and noise are defined by

 H B H n B nBF BF and = =
= =
å åa a
a

A

a a
a

A

1 1

, , (6)

respectively. Fig. 2 shows the equivalent one-step model 
of image formation whereby the beamformed rF data are 
generated directly, and then transformed into a final en-
velope image. note that for a given pulse acquisition sys-
tem, the beamformed system matrix and noise will change 
based on the choice of B.

C. Beamforming and the Ideal Observer

The ideal observer is a well-established component of 
signal detection theory [7], [13]. It constructs a decision 
variable that achieves the highest possible level of task 
performance on whatever data it accesses. as such, it 
serves a benchmark for identifying where information is 
lost. For example, consider the transformation from the 
receiver signals, gr, to the beamformed rF, gBF. This 
transformation is irreversible in that gr cannot be recov-
ered from gBF after compression. If the ideal observer act-
ing on gBF has a performance substantially less than that 
of the ideal observer acting on gr, then signal compression 
in the beamformer is losing information relevant to task 
performance. note that if the transformation is invertible 
(i.e., if gr is recoverable from gBF), then any decision vari-
able that can be formulated in gr can also be formulated 
on gBF, and hence no information is lost.

1) The Ideal Observer Test Statistic: For simple detec-
tion and discrimination tasks, the ideal observer test sta-
tistic is given by a likelihood ratio. let c represent one of 
two image classes, where c =1 consists of data from pa-
tients with malignancies, and c = 0 consists of data from 
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normal patients who have either no disease or benign pro-
cesses (cysts, fibroadenoma, etc.). We will refer to the lat-
ter class generically as benign. The two image classes can 
be used to define a conditional probability at any stage 
of the image formation process including the received sig-
nals, p(gr | c), the beamformed rF signal, p(gBF | c), and 
subsequent envelope images (with some issues described 
subsequently). The ideal observer test statistic is simply 
the ratio of the conditional probabilities

 L( )
( | )
( | )

.g
g
g

=
=
=

p c
p c

1
0

 (7)

This equation uses a generic data set, g, indicating that it 
can be applied at any stage of image formation. However, 
because the conditional distributions of the data will be 
different at different stages, the ideal observer changes at 
each stage.

2) The 2-D Matched-Filter Beamformer: We will now 
turn to a specific choice for the beamforming matrix B in 
(3). The 2dMF beamformer is defined by performing a 
2-d matched filter (across sample points and aperture po-
sitions) on the data from each channel before compression 
to a single signal. This is implemented mathematically by 
selecting the beamforming matrix to be B = HT, where 
the superscript T indicates the transpose of the matrix. 
note that by (4) this is equivalent to a matched filter in 
each channel ( )B Ha a= T  that is then summed across chan-
nels. Thus, the beamformer uses information from multi-
ple aperture windows to filter a given channel signal be-
fore summation. For a highly rectangular H, it is clear 
that multiplication by the transpose will involve a consid-
erable reduction in dimension. However, we will demon-
strate that this choice of beamformer involves no loss of 
diagnostic information from the ideal observer perspec-
tive, even though the transformation is not invertible.

The main assumption needed for our result is that ac-
quisition noise be an independent and identically-distrib-
uted gaussian random field. We make no assumptions on 
the underlying class distributions of the object. For re-
ceiver signals, the conditional probabilities in (7) can be 
written with explicit reference to the distribution of object 
in each class as

 p c p p c( | ) ( | ) ( | ),g f g f fR R R objd= ò  (8)

where dfò  indicates a multidimensional integral over all 
dimensions of the vector f in the integrand that follows. 
Under the assumption of white gaussian acquisition noise 
in (2), with variance sn

2, the conditional probability of the 
data given f is multivariate gaussian,

 p Ke n
R R

/ R
T

R( | ) ,( )( ) ( )g f g Hf g Hf= - - -1 2 2s  (9)

where K is the normalizing constant of the distribution.
substituting (8) and (9) into (7) allows us to write the 

ideal observer test statistic (for the receiver data) as
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cancelling common terms in the numerator and denomi-
nator yields
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The main point of this derivation is noting that the re-
ceiver data, gr, only enters the right side of the equa-
tion in the product HTgr. Therefore, the ideal observer 
test statistic on the receiver data can be computed with 
access just to data compressed using the 2dMF beam-
former. The result of 2dMF beamforming is sufficient for 
computing the ideal observer acting on the entire receiver 
data set and, ignoring practical issues of implementation, 
involves no loss of diagnostic information. We note that 
this result can be easily extended to correlated gaussian 
acquisition noise, which requires pre-whitening gr by mul-
tiplying with the inverse of the noise covariance matrix 
before multiplying by HT.

Eq. (11) thus provides a rationale for the compression 
step inherent to beamforming, based on the idea that re-
ceive-channel data can be combined in a task-independent 
way that nonetheless does not lose any diagnostic task 
information. We can view other beamforming approaches, 
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Fig. 2. an equivalent image formation model for linear beamformers. Here a single beamformed PsF interacts with the scattering object and pro-
duces beamformed rF data after a composite acquisition noise term is added. The subsequent transformation to an envelope image is identical.
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such as standard delay-and-sum, as an approximation to 
this optimal processing.

D. Approaches to Beamforming

so far, we have considered the acquired data to be a 
generic column vector. For specifying the transformation 
used in beamforming, it is more convenient to work with 
the data when it is formatted as a scan-converted 2-d ar-
ray. The column vector ga from (1) is equivalent to the 
2-d array ga[ix, iy], where ix represents axial samples on the 
scan line, and iy represents the lateral aperture position on 
the face of the linear array. We will primarily be concerned 
with the 2-d discrete Fourier transform of these arrays, 
denoted by a caret (^), and the spatial frequency indices 
kx and ky (i.e., ˆ [ , ]g k ka x y  is the 2-d Fourier transform of 
ga[ix, iy]). We will also consider beamformers in which the 
individual blocks of the matrix B in (4) can be imple-
mented by convolutions. let ba[ix, iy] be the PsF (or ker-
nel) of the convolution, then the beamformed data can be 
written in the Fourier domain as

 ˆ [ , ] ˆ [ , ]̂ [ , ].g k k b k k g k kx y a x y a x y
a

A

BF =
=
å

1

 (12)

We will specify different beamformers by the choice of the 
channel transfer function ˆ [ , ].b k ka x y

In this context, the standard delay-and-sum (ds) 
beamformer can be thought of as a simple phase shift 
in the scan-line axis to implement delay correction for 
the channel. let ϕa be the phase shift corresponding to 
the delay correction needed for channel a, which is often 
assumed to be a quadratic function of channel position 
within the aperture window. The delay-and-sum former is 
then implemented by

 ˆ [ , ] ,b k k ea x y
j ka x

DS, = - f  (13)

where j is the imaginary unit. Eq. (13) shows that the sum 
across channels in beamforming is weighted by a phase 
factor in the Fourier domain that accounts for delays in 
acquisition timing.

For the 2dMF beamformer, we must consider the chan-
nel system matrix in (1), which we have assumed can be 
implemented as a 2-d convolution. let ˆ [ , ]h k ka x y  be the 
transfer function of this convolution. The 2dMF beam-
former is than given by

 ˆ [ , ] ˆ [ , ],b k k h k ka x y a x y2DMF, =  (14)

where the overline indicates the complex conjugate. The 
matched filter can be applied directly to the acquired sig-
nals if the matched filter includes the channel delays. al-
ternatively, delay-corrected channel signals can be used 
with delay-corrected matched filters. This is true of the 
various filters described subsequently as well.

The 2dMF beamformer in (14) utilizes both amplitude 
and phase information from the system transfer function. 
To isolate the role of phase information in the matched 
filter beamformer, we implement a (2-d) phase-matched 
filter (PMF) in which each term is a frequency dependent 
phase factor tuned to the system transfer function. The 
functional form of this beamformer is

 ˆ [ , ]
ˆ [ , ]
ˆ [ , ]

,b k k
h k k

h k k
x y

a x y

a x y
PMF,a =  (15)

where the absolute value brackets indicate the magni-
tude of the complex argument. The three beamforming 
approaches described in (13)–(15) are compared in the 
simulation studies. To instead isolate the amplitude com-
ponent of the matched filter independent of the phase, we 
consider an amplitude-matched filter (aMF) defined by

 ˆ [ , ] ˆ [ , ] .b k k h k kx y a x yAMF,a =  (16)

note that the product of the PMF and aMF beamformers 
is the matched filter beamformer in (14).

With the exception of delay-and-sum beamforming, all 
of the approaches we consider require axial and lateral 
processing across aperture positions. However, lateral pro-
cessing is practically difficult because of more extensive 
memory requirements. axial-only processing along each 
scan line is considerably simpler and easier to implement. 
We evaluate the effect of matched filtering without lateral 
processing using a 1dMF defined by

 ˆ [ , ] ˆ [ , ],b k k h ka x y a x1DMF, = 0  (17)

where fixing the y-frequency constrains the spatial convo-
lution kernel to a single scan line.

E. System Model for Receive Channel Signals

1) Modeling Beamformed RF Data: We evaluate the dif-
ferent beamformers on a panel of simple tasks described 
in section III-B. Each task is defined by the conditional 
densities of the two object classes, pobj(f | c). For the pur-
pose of the simulation studies, the object density function 
is parameterized by the variance profile of the object in 
the benign and malignant classes. The object vector is 
defined as a multivariate gaussian random variable with 
each sample point being independent from all others, and 
with variance specified by the variance profile of the class. 
We use zero-mean random fields for the object reflectivity, 
because we are not considering specular reflections. Thus 
the statistical differences between classes are entirely con-
tained in the variance of the object. let us denote objects 
from the benign class by f- and those from the malignant 
class by f+. We can then describe the distributions for 
each class as
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where sobj
2  is the generic variance of the object, and the 

diagonal matrices S0 and S1 represent the task- and class-
dependent deviation from white noise in each class.

The distribution of the object propagates through the 
system matrix as indicated in (2), and then the beam-
forming transform in (3) along with acquisition noise. The 
result is a multivariate gaussian distribution with correla-
tions across the components of gBF,

 p c c( | ) ( | ),,g 0BF BFMVN= S  (19)

where ΣBF,c is a multivariate covariance matrix describing 
the second-order moments of gBF under each hypothesis. 
These covariance matrices are related to the task, system 
model, and beamformer by propagation of variance,

 SBF obj
T T T

, .c c n= +( ) +s s2 2BH I S H B BB  (20)

2) Evaluating the Ideal Observer in Simulation Studies: 
In previous work [5], we have shown that for a general 
gaussian model of this sort, the ideal observer can be 
implemented by the test statistic,

 lBF BF BF
T

BF BF BF( ) ( ) ., ,g g g= - -- -1
2 1

1
0

1S S  (21)

We have also developed a power-series approach for itera-
tively computing the necessary matrix inverses in (19). 
Thus, given a realization of beamformed rF data, we can 
compute a realization of the ideal observer decision vari-
able.

3) Estimating Figures of Merit: By considering many re-
alizations of the decision variable we can estimate figures 
of merit for task performance. For a given task, we gener-
ate a sample of rF data in each of the two classes and then 
use (19) to transform these into realizations of the ideal 
observer decision variable. The measure of performance 
used in the simulation studies is statistical efficiency with 
respect to the ideal observer. This metric is based on the 
proportion of correct responses in a forced-choice experi-
ment, PC, which is the probability that a decision variable 
randomly drawn from the malignant class is greater than 
an independently drawn decision variable from the benign 
class [8]. PC is mathematically equivalent to the area un-
der a receiver operating characteristic (roc) curve.

let lBF,c
m  be samples of the decision variable (m = 

1, …, M) in each class (c = 0, 1). The proportion correct 
is estimated by the average

 ˆ ( ),, ,P
M

C
m m

m

M

m

M

= - ¢

¢==
åå1

2 1 0
11

step BF BFl l  (22)

where the step function is zero for negative arguments and 
one for positive arguments. In principle, the step function 
attains a value of 1/2 when the argument is zero, but this 
should never occur for continuously distributed variables. 
standard errors on this estimate are readily obtained by 
resampling the decision variables.

as defined here, PC applies to fixed choices of the task-
dependent variance maps, and hence to a fixed level of 
task difficulty. To compute the statistical efficiency of a 
beamformer, we seek to find the level of task difficulty 
that produced equivalent performance. Each of the tasks 
used in the study focuses on a feature of interest in breast 
sonography (lesion contrast, eccentricity, spiculation, 
etc.). To put these different features on a common scale, 
we define an object contrast [5], [12] as the absolute value 
of the difference in normalized variance maps,

 C x yii
i

= -å [ ] ,S S1 0 D D  (23)

where Δx and Δy are the axial and lateral sampling inter-
vals. The threshold contrast is the object contrast needed 
for an observer to achieve a targeted level of performance, 
80% correct in this work.

our simulation studies follow the approach used in 
prior studies by evaluating each task at 4 to 5 different 
contrasts, and using these evaluations to build a lookup 
table, from which threshold contrast can be interpolated. 
The efficiency η is defined from the ratio of threshold con-
trasts squared. The numerator of the ratio is given by the 
2dMF beamformer, reflecting the fact that it retains all 
of the task relevant information in the receiver data before 
beamforming. The threshold contrast in the denominator, 
CBF, is the threshold contrast of the beamformer of inter-
est,

 h =
æ
è
ççç

ö
ø
÷÷÷

C
C

MF

BF

2

. (24)

4) Analysis of Envelope Images: The final step of the 
acquisition and processing diagram in Fig. 1 is computa-
tion of an envelope image [7]. In this step, variability in 
the rF signal is converted into a direct measure of signal 
magnitude. computation of the envelope is irreversible [5], 
and therefore has the possibility of losing information in 
the rF signal. Thus, it is important that we include an 
assessment of the effect of an envelope computation, even 
though this is not part of the beamforming process as we 
have defined it. In the end, the goal is to retain as much 
task-relevant information as possible, and to format this 
information so that it will be passed efficiently to the ob-
server via the envelope image.

We will consider two approaches to computing the en-
velope image; both based on the Hilbert transform [14]. 
The standard B-Mode envelope consists of adding a Hil-
bert transform to the imaginary component along each 
scan line to find the analytic signal, followed by the mag-
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nitude of the complex result. The analytic signal, denoted 
gas[ix, iy], can be implemented in the frequency domain by 
a filtering operation on the beamformed rF data,

 ˆ [ , ] ˆ [ , ]ˆ [ ],g k k g k k T kx y x y xAS RF AS=  (25)

where the filter transfer function is dependent only on the 
axial frequency. For an even number of axial samples, Nx, 
the form of the filter is

 ˆ [ ]
. ,

T k
k N

k Nx

x x
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 (26)

which selects the positive frequency indices. after the Hil-
bert transform, the envelope image, eBM[ix, iy], is computed 
by a complex magnitude at each sample point

 e i i g i ix y x yBM AS[ , ] [ , ] .=  (27)

The complex magnitude is what makes the envelope com-
putation irreversible. note that practical implementations 
of envelope computations may also include downsampling. 
For simplicity, we retain the rF sampling rate for all en-
velope images.

a second approach to envelope computation involves 
filtering the rF data with a Weiner filter before the Hil-
bert transform. Previous results have shown that this can 
reduce the loss of information in the envelope image. The 
Wiener-filtered rF data are computed by considering the 
beamformed system in (6) and (12). The Wiener filter re-
quires knowing the beamformed system transfer function 
and noise power spectrum. The resulting Wiener filter is 
given by

 [̂ , ]

ˆ [ , ]ˆ [ , ]
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  (28)

note that this filter assumes that the object consists of 
bandpass white noise with variance sobj

2 . The Weiner filter 
can be applied along with the Hilbert transform,

 ˆ [ , ] [̂ , ]̂ [ , ]ˆ [ ].g k k w k k g k k T kx y x y x y xAS-WF RF AS=  (29)

The resulting envelope image is computed as in (25).
To evaluate the envelope images, we rely on an approxi-

mation also used in previous work. smith and Wagner 
[15] have shown that for low-contrast detection, the ideal 
observer acting on envelope images effectively integrates 
the envelope squared over the lesion area. We use this 
general approach as an approximation to ideal observer 
performance on our panel of detection and discrimination 
tasks although there is some evidence that these do not 
necessarily achieve optimal performance [12]. The smith-
Wagner test statistic is given by the sum

 lSW = - -å1
2 1 0

2( [ , ] [ , ]) [ , ] ,
,

S i i S i i e i ix y x y x y
i ix y

 (30)

where S1 and S0 are the task variance maps arranged as 
a 2-d array. The test statistic is used in (20) and (22) to 
get measures of task performance and efficiency. However, 
in this case the numerator of the efficiency computation 
is still the ideal observer acting on beamformed rF data. 
Thus, efficiency is still relative to the information con-
tained in the received signals.

In addition to the efficiency measure given in (24), we 
are also interested in the effect of the envelope compu-
tation on information content for each beamforming ap-
proach. To isolate this component, we consider a relative 
efficiency, in which the numerator is the object contrast 
threshold for the beamformed rF, and the denominator 
is the object contrast threshold for the same beamform-
ing system derived from envelope images using the smith-
Wagner test statistic,

 hrel
BF

SW
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. (31)

We consider both the standard B-Mode envelope image as 
well as Weiner-filtered envelope images.

III. Methods

In this section we describe the methods used to eval-
uate ideal observer performance on a battery of simple 
tasks related to breast sonography.

A. System Model Using Field II

We have used the Field II code [10], [11] to simulate the 
2-d pulse-echo impulse response from a standard linear 
array transducer. We assumed a 44.3-mm, physical, in-
plan aperture with 224 elements, each element 0.19 × 1.0 
mm in size. The element pitch and kerf were 0.2 mm and 
0.01 mm, respectively. We transmitted two-cycles of a 5.0-
MHz sinusoidal voltage from a 19-mm (96 element) active 
transmit aperture that was circularly focused with a 40-
mm electronic radius of curvature. We then received echoes 
individually on each channel in the same active aperture. 
Images consisted of 128 scan lines formed by indexing the 
96-channel active aperture along the 224-element array. 
To minimize weak artifacts generated during pulse simu-
lation, echoes were created at 320 Msamples/s, low-pass 
filtered (Hamming), and downsampled to 15 Msamples/s 
before simulating the echo fields in gr. For simulating 
properties of the siemens sono-line antares system with 
a VF10–5 linear array, the echo snr of individual chan-
nels averaged 11.2 dB with less than 1% variability. af-
ter ds beamforming, the echo snr increased to 29.4 dB, 
which is consistent with system measurements made from 
phantoms (aTs laboratories, Bridgeport, cT). We have 
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also measured the noise power spectrum for the siemens 
antares system over the 20 dB signal bandwidth, and we 
found it was flat within 2 dB, provided no time-gain com-
pensation (Tgc) was applied. With Tgc, there was sys-
tematic variability in the noise power as much as 6 dB. 
of course, these echo snr values vary depending on the 
system parameters and the scattering strength. However, 
we would expect our efficiency results to be somewhat 
more stable because the figure of merit is a ratio of con-
trast thresholds. any change in contrast threshold caused 
by a different snr should be somewhat compensated by 
a change in the contrast threshold of the ideal observer, 
resulting in a similar level of efficiency. This process will 
eventually break down in the limit of no noise (i.e., infinite 
snr), where all reasonable beamformers (i.e., beamform-
ers that do not zero frequencies with positive magnitude) 
are equivalent.

Examples of the system PsF for various receiver chan-
nels within the moving aperture are shown in Fig. 3. as 
expected, PsFs near the edge of the aperture window 
are more tilted than those in the center, and all have ex-
tending lateral edge waves. The PsF after delay-and-sum 
beamforming is shown on the far right side of Fig. 3. The 
effect of beamforming here is to concentrate energy in the 

central region of the pulse and to modulate the effects of 
the edge waves.

B. Panel of Tasks

We have developed a panel of simple detection and 
discrimination tasks for evaluating observer performance 
on various features of interest related to detection and 
diagnosis of breast cancer by ultrasound. The five tasks 
were selected in consultation with a practicing mammog-
rapher who routinely uses ultrasound as an adjunct to 
X-ray mammography. These are simple classification tasks 
with two possible classes corresponding to our notions of 
benign and malignant.

Fig. 4 shows variance profiles for the five tasks used in 
this work. For clarity, the difference between the malignant 
and benign variance profiles is also shown in the bottom 
row of the panel. Task 1 represents detection of a 3-mm 
low-contrast hypoechoic region. Tasks 2–4 all involve dis-
criminating features from the boundary of a suspicious 
region. This corresponds to the frequent use of ultrasound 
for differential diagnosis of breast lesions in adjunct ex-
aminations. Task 2 considers lesion eccentricity with in-
creased eccentricity being a sign of malignancy. Task 3 
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Fig. 3. receive element pulse profiles. The panel shows various receive channel pulse PsFs. The pulse profile rotates because of the relative position 
of each channel in the aperture.

Fig. 4. object variance profiles used to evaluate beamforming. Malignant (top) and benign (middle) profiles are shown along with difference between 
the two profiles (bottom).
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considers a soft margin as opposed to a well circumscribed 
boundary. Here, a soft margin is indicative of malignancy. 
Task 4 considers the presence of spiculations in the border 
as a malignant feature as compared with a smooth border, 
which tends to indicate a benign lesion. Finally, Task 5 
considers the presence of hypoechoic material in the lesion 
interior as a feature of malignant lesions as opposed to 
nearly anechoic interiors (i.e., scattering variance is 5% of 
surrounding region), which might indicate a cyst or other 
benign finding.

C. Monte-Carlo Simulations

Each simulation was based on a total of 8000 sample 
objects (4000 malignant and 4000 benign). These initial 
simulation data were used to evaluate all three types of 
images (rF, Wiener-filtered envelope, and B-mode enve-
lope), all five beamforming systems (2dMF, PMF, aMF, 
1dMF, and ds), and at a set of 4 or 5 object contrasts 
to build up a lookup table for evaluating efficiency. In 
this way, we ensured that all methods were compared on 
all the same underlying set of objects and realizations of 
acquisition noise. The raw data for the simulation was 
obtained by multiplying the object by the square root of 
the appropriate variance map, and then passing it through 
the transfer functions of the echo-forming and beamform-
ing systems before adding the acquisition noise filtered by 
the square root of the system noise power spectrum. In 
this way, the resulting data represented beamformed rF 
signals.

The ideal observer was evaluated by computing the de-
cision variable in (21). Inverse covariance products needed 
in the ideal observer computation were implemented itera-
tively through a power series [5], [16]. The Weiner-filtered 
envelope observer was implemented by Wiener filtering 
the (scan-converted) rF data and then computing the 
magnitude of the analytic signal as shown in (29). B-mode 
envelopes were computed similarly without the Wiener 
filtering step. Thus for a given image type, beamforming 
system, and task-dependent object contrast, there were a 
total of 4000 malignant decision variables and 4000 benign 
decision variables. Performance was estimated using (22). 
standard errors were obtained by bootstrap resampling of 
the decision variables.

In this study, we used two measures of convergence for 
computing the ideal observer test statistic. The first mea-
sure was that the last iterative update should have at 
most only a very small improvement in performance. let 
Pck be the performance at iteration k. The criterion was 
implemented by requiring that Pck − Pck−1 < 0.001 at 
the final k. This ensured that iterative updates were small 
at convergence. The second criterion was meant to ensure 
that the difference between the current value and the fully 
converged value is small. Because the power-method for 
computing an inverse covariance matrix product is known 
to have approximately linear convergence, the difference 
between the fully converged performance and the perfor-
mance at iteration k should decrease at a rate proportional 

to 1/k. To implement this convergence criterion, we fit the 
function Pck = Pc∞ − α/k over a range of the final itera-
tions, where Pc∞ is the fully converged performance, and 
α is the linear rate of convergence. at the final iteration, 
we required that Pc∞ − Pck < 0.001 at all contrasts. 
We found that Task 1 converged very quickly, meeting all 
criteria by the 2nd iteration, although a total of 5 were 
used. For Tasks 2 and 4, the criteria were achieved after 50 
iterations. Task 3 achieved the convergence criteria after 
80 iterations and Task 5 required 100 iterations.

as seen in (22), efficiency is computed as a ratio of 
threshold contrasts. We use multiple contrasts to find the 
threshold contrast by interpolation. In previous work [5] 
we have found that simple linear interpolation is most ef-
fective when the performance measure is the detectability 
index d′ rather than Pc. We converted each Pc to a de-
tectability using the standard formula [8] for 2aFc ex-
periments, ¢ = -d 2 1F ( ),PC  with Φ being the cumulative 
normal distribution function. linear interpolation was 
then used to find the contrast where Pc = 80% (i.e., d′ = 
1.19). standard errors on thresholds were determined by 
propagation of error from the Monte-carlo simulation. 
once thresholds were computed, efficiency was computed 
by taking the appropriate ratio.

IV. results and discussion

A. Rationale for Signal Compression

a critical component of beamforming, as we have de-
fined it, is a compression step. signals from all receiver 
channels in a moving aperture are combined irreversibly 
into a single echo signal whose envelope represents the B-
mode image line for that active aperture location. But if 
compression inherently involves a loss of information, then 
we might conclude that the only justification for signal 
compression in beamforming is the practical requirement 
of producing an image.

The ideal observer bases its decision on a scalar test 
statistic, which can be regarded as the ultimate level of 
data compression. However, it does so using a computa-
tion that is highly task specific. We use the array of tasks 
in this work as simple examples of the many possible pur-
poses for acquiring an ultrasound image of the breast. 
Processing the image for any one specific task would likely 
be detrimental to the performance of the many others. 
Hence, in using the ideal observer to guide image pro-
cessing, we seek to find steps that are independent of the 
task.

our derivation in (11) shows that compression can, in 
principle, be achieved without loss of diagnostic informa-
tion. The fact that the ideal observer decision variable 
for any simple detection or discrimination task can be 
as effectively implemented on compressed data as on the 
original data demonstrates the high degree of statistical 
redundancy in the acquired data, which can be reduced 
without penalty by the 2dMF beamformer. We can then 
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interpret other beamformers, such as delay-and-sum, as 
approximations to this optimal transform. our results 
on the efficiency of delay-and-sum relative to the 2dMF 
beamformer will give a sense of the price of this approxi-
mation.

B. Beamformer Properties

We have analyzed beamforming with various forms of 
matched filtering and by standard delay-and-sum trans-
formations. Each pre-compression process results in some-
what different statistical properties in the compressed rF 
data they produce. In Fig. 5, we characterize these statis-
tical properties as images, by considering the scan-con-
verted rF data. We utilize stationary measures such as 
the transfer function, ˆ [ , ]ˆ [ , ] ,b k k h k ka x y a x yaå  and noise pow-

er spectrum (nPs), sn a x ya b k k2 2ˆ [ , ] ,å  because the system is 
assumed to be locally shift invariant in the focal region. 
The top panel of Fig. 5 shows the pulse profile after signal 
compression, which can be thought of as the point-spread 
function (PsF) of the system. The transfer function of 
each PsF in the next panel shows how the bandwidth 

depends on the beamforming approach. The 2dMF beam-
former and aMF beamformers appear to be somewhat 
more narrow-band than either the ds or the PMF beam-
formers. The 1dMF agrees with the 2dMF in the axial 
direction but has a slightly broader bandwidth in the lat-
eral direction. noise power in the 2dMF and aMF beam-
formers is also concentrated around the transfer function 
bandwidth. By contrast, the phase-only ds and PMF 
beamformers leave the noise white with a flat power spec-
trum over the nyquist band. noise power in the 1dMF is 
limited to the band of the 2dMF on the axial direction 
and is white to the nyquist frequency in the lateral direc-
tion. as a way to normalize the different transfer functions 
and power spectra, we compute a signal-to-noise ratio de-
fined as the ratio of the transfer function squared to the 
noise power spectrum at each frequency. The ratio is then 
log-compressed to make it equivalent to units of decibels. 
In these images of frequency snr, the various systems 
generally look similar with a slightly larger region of high 
snr in the 2dMF beamformer.

Fig. 6 plots echo and peak snrs of each beamforming 
system. The echo snr is defined as receiver variance (in-
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Fig. 5. statistical properties of beamformers. The five beamforming approaches used in this study are analyzed here for their transfer and noise 
properties. The top row gives the beamformed pulse profile (horizontal arrow at left shows direction of axial propagation), which is effectively the 
PsF of the beamformed rF data. The second row of the panel is the amplitude of the transfer function of this pulse (origin is at the center of each 
image). The third row of the panel shows the noise power spectrum of the composite acquisition noise term. The fourth row of the panel displays the 
frequency snr with intensity log-compressed to a decibel scale. note that the top row is magnified by a factor of 4 relative to the lower rows.
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tegrated Ps) caused by a uniform scattering field divided 
by the variance of acquisition noise. The peak snr is the 
largest value of snr for a single frequency in the signal 
band. across the individual receiver channels, echo snr 
averages 11.2 dB with a standard deviation of 0.1 dB. Be-
cause this occurs before any beamforming is done, it has 
no dependence on the beamformer used. after beamform-
ing, the echo snr is substantially higher for the 2dMF 
and aMF beamformers than either the PMF or ds beam-
former. The 1dMF falls between the two. This appears to 
reflect the reduction in acquisition noise variance from the 
amplitude modulation in the beamformer. However, when 
peak snr is used, there appears to be little dependence on 
the beamformer. our echo snr results are consistent with 

the findings of guenther and Walker [17] using the related 
measure of cystic resolution [18], [19], although further 
investigation is needed to see how task performance and 
cystic resolution are related.

Fig. 7 gives examples of envelope images derived from 
different beamformers. The object being simulated is a 
5-mm hypoechoic region, and all envelope images were 
computed by taking the magnitude of the analytic signal. 
The upper row of the panel shows envelope images com-
puted directly from the simulated rF data for each of 
the five beamformers evaluated. The lower row shows the 
effect of Wiener filtering the rF data before computing 
the envelope image. careful inspection of the images re-
veals some differences in speckle size between beamform-
ers in both rows. However the more striking difference is 
between the standard B-mode envelope and the Weiner 
filtered envelope, where speckle size is reduced consider-
ably. It is not clear that this reduction in speckle size 
will necessarily result in better performance because the 
contrast of the simulated lesion appears to be reduced 
somewhat as well.

C. Efficiency of Beamforming Systems in RF Frames

Fig. 8 plots the efficiency of beamforming in the rF 
data as well as Wiener-filtered and B-mode envelope im-
ages. From the derivation in section II-c-2, we know that 
the ideal observer acting on rF data that has been com-
pressed using the 2dMF beamformer is equivalent to the 
ideal observer acting before compression takes place, and 
therefore sets an upper bound on performance. all effi-
ciencies are computed using the contrast threshold of the 
2dMF beamformer in the numerator of (22). The result of 
this is that the 2dMF acting on rF data has an efficiency 
of 100% in all tasks.

For the rF data, efficiency drops consistently across 
the different beamformers arranged from the 2dMF to ds 
beamformers. For standard delay-and-sum beamforming, 
efficiency values range from 24% to 75% with an average 
across tasks of 45%. Therefore, taking the efficiency as 
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Fig. 6. receiver snrs. Various snrs are plotted as a function of the 
beamforming approach used (acronyms defined in Fig. 5). Element snr 
is the average echo snr across all 96 elements and is the same for all ap-
proaches because it precedes the matched filtering operation. Echo and 
peak snrs give different assessments of the beamforming approaches.

Fig. 7. Example envelope images. B-mode and Wiener-filtered envelope images for the five beamforming approaches evaluated in this study. all 
images are generated from the same simulated rF element data. Both the choice of beamformer and post-compression processing influence speckle 
sizes and textures.
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a measure of diagnostic information suggests that stan-
dard delay-and-sum beamforming loses roughly half the 
diagnostic information in the acquired data. The phase-
matched filter efficiency ranges from 71 to 90% with an 
average value across tasks of 83%. Thus, incorporating 
only the phase component of the matched filter makes up 
roughly 60% of the efficiency drop between the matched-
filter and delay-and-sum beamformers. The amplitude 
matched filter efficiency ranges from 34% to 87%, and 
makes up an average 21% in the difference between the 
2dMF and ds beamformers. This shows that amplitude 
has a significant, but substantially smaller role than phase 
in transferring information to the compressed rF signal. 
a surprising finding was that the 1dMF showed no im-
provement over the ds beamformer. Beamforming is often 
viewed as an operation that combines signals from within 
an aperture to produce a single scan line. our findings 
indicate that channel correlations from different apertures 
play a crucial role in the transfer of diagnostic information 
in beamforming.

Efficiency of the Wiener filtered envelope images in Fig. 
8 is very close to ideal observer performance in Task 1, 
as has been described previously [5]. In Tasks 2–4, effi-
ciency is substantially less than the ideal observer acting 
on the rF data, but the relative ordering of the different 
beamformers is quite similar. Task 5 is the exception, with 
much less of a drop in efficiency going from the 2dMF to 
ds beamformers. There is also less of a relative advantage 
with the PMF, and an observed disadvantage with the 
aMF beamformers. This is also consistent with previous 
findings [5] showing less of a benefit to the Wiener-filtered 
envelope in general for Task 5, and has been explained as 

poor tuning of a shift-invariant Wiener filter to the lower 
level of noise in the interior of the lesion. nonetheless, the 
2dMF beamformer maintains roughly a 2-fold advantage 
over delay-and-sum for Wiener-filtered envelope images.

somewhat surprisingly, the 2dMF beamformer loses 
its advantage in standard B-mode envelope images. The 
2dMF and aMF beamformers have the lowest efficiency 
of the five beamformers tested, roughly two-thirds the ef-
ficiency of delay-and-sum, and even less when compared 
with the phase-matched filter, which performed the best 
of the methods applied to B-mode envelope images. The 
1dMF also underperforms ds beamforming in this case. 
These results show that a substantial advantage in diag-
nostic information in the compressed rF data can sub-
sequently be lost in the transformation to an envelope 
image. The advantage of the 2dMF beamformer is only 
realized with a post-processing step before the envelope 
image is computed.

D. Relative Efficiency of Envelope Images

There are two possible sources of inefficiency in the 
envelope images of Fig. 8. Information may be lost by 
the beamformer or by the transformation to the envelope 
image. loss of information by the beamformer shows up 
as a reduction in efficiency in the resulting rF data. This 
can be determined from the rF plots in Fig. 8. For under-
standing of how much information is lost in the envelope 
transformation, we plot relative efficiencies defined in (29) 
for the various beamforming systems in Fig. 9. relative 
efficiency uses the contrast threshold of the beamformer in 
the rF divided by the contrast threshold in the B-Mode 
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Fig. 8. Task efficiency. Efficiency of the ideal observer acting on pre-envelope rF data, and smith-Wagner approximations to the ideal observer 
acting on Wiener-filtered envelope (WF-EnV) and B-mode envelope (BM-EnV) images are shown across beamforming systems for each task (the 
legend in the upper left plot applies to all plots). note that a different logarithmic range is used on the y-axis for Task 3. Bootstrapped error bars 
in Tasks 1–5 represent +/− 1 standard error due to the finite number of Monte-carlo samples (4000) used to estimate efficiency. no error bars are 
plotted for the average across tasks.
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or Wiener-filtered envelope image. This is somewhat dif-
ferent than Fig. 8, where the 2dMF contrast threshold 
was always used in the numerator. The relative efficiency 
uses only quantities occurring after the compression step, 
and therefore isolates the information lost in the envelope 
transformation.

The relative efficiency of the Wiener-filtered envelope 
has substantial variability across tasks, but somewhat sur-
prisingly, it has relatively little change for different beam-
forming systems within a given task. By contrast, the B-
mode envelope images show both variability across tasks 
and variability across beamformers within a task, with 
delay-and-sum achieving the highest relative efficiency 
(and the 2dMF the lowest) of the beamforming systems 
tested. For the 2dMF beamformer, the transformation to 
a B-mode envelope is so inefficient that its substantial 
advantage in the beamformed rF domain is completely 
negated.

E. Limitations of the Current Study

Before concluding, we review the three limiting assump-
tions of the approach used here. resolving the effects of 
these assumptions is the subject of ongoing work by the 
authors.

We have evaluated beamforming in the context of 
simple detection and discrimination tasks. The images in 
each class of a given task are completely characterized by 
the object variance map, and hence the rather uniform 
textures of the sample images in Fig. 7. This is an enor-
mous simplification of clinical breast sonography, where 
contrast and shape variability, as well as a variety of tissue 
types, lead to many different variance maps for each class. 
The assumption here is that performance in an array of 
simple tasks is indicative of performance in more realistic 
settings.

We make strong gaussian assumptions in our system 
model. The finding that the matched-filter beamformer 
preserves diagnostic information required only a gauss-
ian assumption of the electronic noise, but our simulation 
results also made the assumption of gaussian-distributed 
object reflectivity that is effectively independent at sam-

pling rates relevant to ultrasound. It is possible that other 
distributions on reflectivity would lead to different opti-
mal beamforming transforms.

We assume that we have a well-defined system model, 
and for computational reasons we assume that it can be 
implemented by a discrete convolution of a system PsF 
with the sampled object. The assumption of a convolution-
based system model is idealized, and at best confined to 
a small isoplanatic region. Furthermore, the wraparound 
arising from discrete convolutions is non-physical. We 
have tried to avoid any effects of wrap-around by making 
the image large enough that the edges of the image, where 
wrap-around occurs, are not relevant for task perfor-
mance. However, even the assumption of a known system 
model is difficult in practice. The complexity of acoustic 
wave propagation in nonuniform media and nonlinear ef-
fects such as phase aberration make full specification of a 
system model difficult.

V. conclusions

The purpose of this work has been to examine beam-
forming from the perspective of diagnostic information 
transfer as measured by the ideal observer. We have gener-
alized this approach from previous work for the purpose of 
analyzing beamforming by developing a stochastic model 
of image formation based on individual receiver signals. 
This results in a different system model for each receiv-
er channel in a moving aperture, as well as independent 
acquisition noise. The mathematical model for each of 
these channel systems can be assembled into a single large 
block-matrix system representing image formation data at 
the level of individual receiver channels. The model can be 
used to specify the statistics of the received signals which 
allows us to define an ideal observer decision variable for 
simple detection and discrimination tasks.

By analyzing the structure of the ideal observer’s deci-
sion variable, we find that the signals from independent 
receiver channels can be compressed into a single signal 
by a 2-d matched filtering operation followed by summa-
tion across channels at each time point. We demonstrate 
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Fig. 9. relative efficiency of envelope images. Efficiency of smith-Wagner approximations for envelope images relative to the ideal observer acting on 
rF data are plotted across tasks for each beamforming system (legend applies to both plots). although there is substantial variability across tasks 
in both plots, the Wiener-filtered envelope images (a) show much less variability and generally higher relative efficiency across beamforming systems 
than do B-mode envelope images (b).
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that this transformation does not lose any diagnostic in-
formation in the sense that the ideal observer acting on 
the compressed signal is equivalent to the ideal observer 
implemented before compression on all the acquired data. 
The fact that receive-channel signal compression can be 
implemented without loss of diagnostic information pro-
vides a rigorous theoretical justification for beamforming 
from the perspective of task performance.

We use five tasks related to breast sonography to show 
the degree to which the form of the beamforming trans-
form can influence the transfer of information, as mea-
sured by statistical efficiency of task performance. at the 
level of the compressed rF signal, the 2dMF beamformer 
increases efficiency by a factor of 2.2 over standard delay-
and-sum beamforming. The 2dMF beamformer modulates 
each channel signal both in amplitude and phase as well as 
laterally and axially. We have evaluated phase matched-
filter, amplitude matched filter, and 1-d axial matched 
filter beamformers to assess the role of each of these com-
ponents. The use of phase information achieves most of 
the gains of the optimal 2dMF, with a factor of 1.8 in 
increased efficiency relative to delay-and-sum beamform-
ing. The amplitude plays a more modest role, showing 
only a factor of 1.2 improvement in efficiency relative to 
delay-and-sum. somewhat surprisingly, the 1-d matched 
filter shows no improvement at all over delay-and-sum 
beamforming.

It is also clear that the form of the beamformer can 
have a strong effect on the diagnostic information of the 
final envelope image. The smith-Wagner efficiency of the 
B-mode envelope image drops by more than two orders of 
magnitude in some cases, with a strong dependence of the 
beamforming system and the task being considered. Inter-
estingly, application of a Weiner filter to the beamformed 
rF data essentially negates differences in the relative effi-
ciency of different beamforming systems going from rF to 
an envelope. nonetheless, our results show that post-com-
pression processing (here we used a spatial Wiener filter) 
is necessary for the information in the 2dMF beamformer 
to transfer to a final envelope image.

our results are all derived from simulations, where we 
know the underlying system model well. This is rarely 
the case with real scanners used in clinical applications. 
nonetheless, our results suggest that efforts to develop 
more accurate system models in these more challenging 
environments—and the incorporation of these models into 
the processing of received data—can, in principle, have a 
substantial effect on task-relevant information in the final 
image.
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