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Abstract—An ultrasonic shear wave imaging technique is 
being developed for estimating the complex shear modulus 
of biphasic hydropolymers including soft biological tissues. A 
needle placed in the medium is vibrated along its axis to gener-
ate harmonic shear waves. Doppler pulses synchronously track 
particle motion to estimate shear wave propagation speed. Ve-
locity estimation is improved by implementing a k-lag phase 
estimator. Fitting shear-wave speed estimates to the predicted 
dispersion relation curves obtained from two rheological mod-
els, we estimate the elastic and viscous components of the com-
plex shear modulus. The dispersion equation estimated using 
the standard linear solid-body (Zener) model is compared with 
that from the Kelvin-Voigt model to estimate moduli in gelatin 
gels in the 50 to 450 Hz shear wave frequency bandwidth. Both 
models give comparable estimates that agree with independent 
shear rheometer measurements obtained at lower strain rates.

i. introduction

three-dimensional hydrated collagen and agarose 
scaffolds are now standard media for exploring cellular 

mechanobiology [1]–[3]. embedded cells respond to their 
mechanical environment as provided by the support ma-
trix, which in breast tissue determines many cell functions 
from normal homeostatic behavior through malignant cell 
progression, tumor growth, and metastasis. consequently, 
deformation patterns of these fluidic polymers reveal es-
sential properties of the mechano-environment that regu-
late mammary cell behavior. three-dimensional cell cul-
tures are ideal media for discovering biological sources of 
elasticity image contrast that can be related back to the 
cellular biology of the underlying disease process. We are 
developing verifiable techniques for measuring viscoelastic 
properties of 3-d cell culture gels under sterile conditions 
and over an extended applied-force bandwidth.

during the last decade, several shear-wave estimation 
techniques have emerged as tools for measuring mechani-
cal moduli of biological tissues [4]–[12]. these dynamic 
techniques apply an acoustic radiation force or contact 
vibrator to generate shear waves in the medium that are 
imaged by phase-sensitive medical imaging methods, e.g., 

ultrasonic, magnetic resonance (Mr), or optical. We de-
scribe an ultrasonic doppler technique that maps shear 
wave energy generated by a vibrating needle at frequencies 
between 50 and 450 Hz to estimate viscoelastic param-
eters. it builds on a growing shear-wave imaging literature 
for estimating the regional elastic modulus [13], [14].

a mechanical actuator harmonically drives a stainless 
steel needle placed in the medium to generate narrow-
band cylindrical shear waves. shear waves are imaged in 
a radial plane using a multi-lag phase estimator, which 
leverages the narrow-band wave feature to extend stan-
dard pulse-pair (lag-one) processing for reduced velocity 
variance. Performance of the multi-lag phase estimator is 
evaluated experimentally and through simulation. We use 
a phase-gradient technique to estimate shear wave speed 
from estimated particle velocities at each frequency, and 
we fit those results to rheological model predictions re-
lating shear wave dispersion to the complex modulus of 
the medium. thus, we obtain spatially-averaged modulus 
estimates for hydrogel media that can be independently 
verified to assess accuracy and precision.

ii. Methods

the aim of the proposed method is to accurately mea-
sure the complex shear modulus of soft biological media. 
these initial studies measure properties of collagenous hy-
drogels that share key structural and mechanical features 
of natural and engineered breast tissues [15].

A. Temporal Phase and Velocity Estimation

the shear wave imaging experiment is depicted in fig. 
1. a mechanical actuator (sf-9324, Pasco scientific, ro-
seville, ca) was adapted to hold a stainless-steel needle. 
the needle is 1.5 mm in diameter (17 gauge) and 13 cm 
long. the actuator is driven by an arbitrary waveform 
generator transmitting 500 ms pure-tone voltage bursts 
in the frequency range of 50 to 450 Hz. the voltage am-
plitude ranged from 5 to 15 V. the needle vibrates along 
the z-axis, thus generating cylindrical shear waves that 
propagate radially for several millimeters. Harmonic shear 
waves are tracked with a linear-array transducer (BW-
14/60, sonixrP, ultrasonix Medical corp., richmond, 
Bc, canada). the axis of the vibrating needle is oriented 
θ = 35 ± 5° from the doppler beam axis.

the ultrasound system was used to estimate particle 
velocity via pulsed doppler methods. a linear array trans-
ducer driven by 6-cycle, 6.67-MHz voltage pulses gen-

Shear Modulus Estimation With Vibrating 
Needle Stimulation

Marko orescanin, Student Member, IEEE, and Michael f. insana, Senior Member, IEEE

Manuscript received december 28, 2009; accepted february 19, 2010. 
We gratefully acknowledge the support of dr. l. Huang and the u.s. 
department of energy through the lanl/ldrd Program for this work. 
this work was supported in part by the national cancer institute under 
award number r01 ca082497.

the authors are with the department of electrical and computer 
engineering and the Beckman institute for advanced science and tech-
nology at the university of illinois at urbana-champaign, urbana, il 
(e-mail: moresca2@illinois.edu).

M. f. insana is also with the department of Bioengineering at the 
university of illinois at urbana-champaign, urbana, il.

digital object identifier 10.1109/tuffc.2010.1555

Authorized licensed use limited to: University of Illinois. Downloaded on August 03,2010 at 14:07:36 UTC from IEEE Xplore.  Restrictions apply. 



erated echo waveforms with a center frequency of fc = 
6 MHz. doppler pulse transmission was synchronous with 
actuator excitation. at each lateral position x, up to 3000 
doppler pulses were emitted at a rate of 10 kHz so the 
total acquisition time was Ts ≤ 300 ms. the beam-axis 
position was shifted laterally 0.46 mm, one array element, 
after each packet transmission, except near the field edges 
where the beam was electronically steered. the lateral 
beam increment was verified using a phantom (ats labo-
ratories, model 539). 128 a-lines were recorded per rf 
frame with beam interpolation turned off. rf echo wave-
forms were sampled at 40 Msamples/s (fast time) and 
internally downsampled to 20 Msamples/s.

typical doppler velocity estimation is based on pulse-
pair phase-shift estimation measurements using lag-one 
autocorrelation [16]. acquisition time is divided into M′ 
= 500 records of 0.6 ms, the temporal-phase sampling 
interval, where 1 ≤ m′ ≤ M′. Within each record, there is 
an ensemble of six echoes from M = 6 pulse transmissions. 
the index 1 ≤ m ≤ M counts the echo waveforms in “slow 
time” sampled on the interval Tprf = 0.1 ms within the 
ensemble. the analytic signal of the echo waveform V and 
its complex conjugate V* were entered into the lag-one 
correlation estimator of temporal phase:
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the process was repeated for each of 1 ≤ n ≤ N echo 
range samples in the a-line range and for the 1 ≤ ℓ ≤ 
L  a-lines at lateral indices along the x-axis of the array. 
Phase estimates are approximately constant with range, 

and therefore values are averaged spatially over 10 range 
samples using a running mean: 
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from these data, we estimate the instantaneous particle 
velocity û as a function of time and space for each frame 
of rf data (see fig. 2) using [17], [18]
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where c is the compressional-wave speed of sound in the 
medium (1.5 mm/μs) and arg( )f  indicates the phase angle 
of spatially averaged estimates. High-pass wall filtering is 
disabled for these acquisitions. û estimates the z-axis com-
ponent of particle velocity where we track the sign of 
arg( )f  to indicate movement toward or away from the 
transducer.

time-harmonic shear wave excitation produces a nar-
row velocity spectrum, which correlates the echo data 
within each M-pulse ensemble record. therefore, we may 
combine multiple phase lags within the ensemble to im-
prove performance.

B. Lag-k Phase Velocity Estimator

lag-k estimation of the mean velocity has been investi-
gated by several authors within the weather radar commu-
nity [19], [20], where it is called poly-pulse-pair processing. 
this method is able to reduce velocity estimation variance 
for narrow-band doppler echoes when the echo snr is 
less than 30 dB. the improvement is due to averaging 
phase estimates whose fluctuations are caused by zero-
mean echo-signal noise.
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fig. 1. diagram of the experiment to measure viscoelastic properties 
of gel samples. Mechanical actuator is driving a stainless steel needle. 
Momentum of the needle displacement is transferred to the medium as 
cylindrical shear waves. a linear array doppler probe tracks the induced 
transverse motion of scatterers as shear waves propagate. at the bottom 
is a timing diagram for the (up to) 3000 doppler pulses transmitted at 
each position along x.

fig. 2. Particle velocity image ˆ cos cosu q q( , )x z  in gelatin from one rf 
frame. shear waves are generated by a needle moving near the elliptical 
center. the x, z axes (fig. 1) are rotated θ = 30° counterclockwise about 
the needle.
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lag-k estimation is a generalization of (1):
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where P correlation estimates are computed within each 
M-pulse record such that 1 ≤ k ≤ P ≤ M. We spatially 
average estimates along the z-axis and combine the P = 
5 estimates at a point while eliminating phase-angle am-
biguity via
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choosing P = 1 reduces (4) to the lag-one autocorrelation 
estimate. eq. (4) estimates may be applied to (2) to find 
û( )t  (fig. 1, left plot), and then further processed to esti-
mate the shear-wave phase speed from estimates of spatial 
phase (fig. 1, right plot and fig. 2), as will be shown 
later.

the maximum detectable particle velocity ûmax is lim-
ited by the ±π bound on temporal phase. for the lag-one 
estimate of (1), (2) gives ˆ .umax prf/= 4c f Tc  the disadvan-
tage of the lag-k phase estimate of (4) is the k-fold reduc-
tion in ˆ .umax prf/= 4c f T kc

C. Rheological Models

like many soft tissues, gelatin gels can be modeled as 
linear viscoelastic media. our goal in this section is to 
relate observed properties of particle displacement waves 
to the viscoelastic properties that characterize media in 
which they travel. Beginning with a solution to the wave 
equation for elastic solids, we extend the result to include 
the frequency-dependent complex modulus of viscoelas-
tic media. the results depend on the assumed rheological 
model describing dynamic behavior of the medium. We 
then show how temporal phase estimates are applied to 
the estimation of shear-wave phase speed. the wave speed 
dependence on applied force frequency, that is, dispersion, 
is used to estimate the complex modulus.

the navier wave equation for particle displacement 
vector u = (ux, uy, uz) [m] in a homogeneous elastic solid 
is [21],
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λ and μ are lamé constants [Pa], ρ is the mass density of 
the medium [kg/m3], and f = (fx, fy, fz) is the external body 
force per unit mass of the medium [m/s2]. let x = (x, y, z) 
and r2 = x2 + y2.

a needle is inserted into the gel along the z-axis and vi-
brated harmonically without slipping at radial frequency 
ω along z with force f = (0, 0, fz(x, t)) where fz(x, t) = f0(r)

e−iωt. that force displaces the needle as u = (0, 0, uz(x, t)) 
where uz(x, t) = u0(r)e−iωt. if the needle length and the me-
dium dimensions are both larger than several wavelengths, 
we can model the experiment as a source radiating into an 
infinite homogeneous medium. these shear waves diverge 
cylindrically from the needle along r, and f0(r) = Cμδ(r)/
πρr, where C [m] is a dimensionality constant and δ(r)/πr 
= δ(r) = δ(x)δ(y) is the 2-d dirac delta. lacking compres-
sional waves, ∇ ∙ u = 0, and (5) reduces to
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where the elastic shear-wave number ¢k cs s= =2rw m w/ /  
for shear-wave speed cs = m r/ , and Ñ ¶ ¶r r2 2 2= /
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We now solve (6) for u0, the z component of particle 
displacement within the x, y plane. leveraging polar sym-
metry, a solution is found by taking the Hankel transform 
of (6) and solving for U u r C ks0 0

2 2( ) ( ) = ( )x x  / - ¢ . the 
inverse transform yields the spatial part of displacement 
[21],
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the exact solution (first form) includes H 0
(1), a zeroth-or-

der Hankel function of the first kind. the approximate 
solution (second form) includes the asymptotic expansion 
of H 0

(1) for large ¢k rs  [22]. at 50 Hz, ¢k rs  3 at 1 cm from 
the needle.

applying the correspondence principle [23], [24], we can 
extend the above solution for linear elastic solids to in-
clude linear viscoelastic solids. to do this, we represent the 
dynamics of viscoelastic media with a complex shear mod-
ulus from the Kelvin-Voigt (KV) rheological model, μ = 
μ1 − iωη. μ1 is the elastic shear constant and η is the dy-
namic viscous constant of the KV model. the wave num-
ber for viscoelastic media is now complex, 
k k is s s= =2rw m a/ ¢ + , where αs is the shear-wave at-
tenuation coefficient. also, shear speed can vary with fre-
quency for the KV model [25]:
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eq. (8) relates μ1 and η to measurements of shear wave 
dispersion [4] and attenuation. our next step is to esti-
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mate cs from the spatial phase of harmonic shear wave 
propagation.

D. Shear Speed From Spatial Phase Gradient

the z component of particle velocity is, from (7),
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Because we measure velocity in the x, z plane (fig. 1), 
we replace r with x. the last form of the complex veloc-
ity expression of (9) separates velocity magnitude V0(x) 
from the temporal and spatial phase factors. Because ks is 
complex, it requires some algebra to show that the spatial 
phase gradient is
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thus cs is estimated from the spatial phase gradient of 
particle velocity. in practice, phase is sampled along the 
x-axis at a constant interval equal to the transducer array 
pitch, X = 0.46 mm, such that x[ℓ] = ℓX.

let ¢̂u  be the analytic signal of particle velocity esti-
mates from (2). recall that we compute as many as 500 
temporal velocity estimates at each location in the x[ℓ], z[n′] 
image plane. Beginning with the left-most a-line in fig. 1, 
we compute a four-sample running mean in space and 
average 40 values in time (after the transient wave has 
dissipated) to form spatiotemporally-averaged estimates,
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Phase y[ , ]¢ ¢
 n  is a function of space via x[ℓ′], z[n′].

in the appendix, we show that dψ/dx from (10) is ap-
proximately ( )arg .y /X  similar to that found by Hoyt et al. 
[5] for crawling wave imaging, the average shear speed is
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where 〈∙〉Ω(ω) indicates that we further spatially average 
values over area Ω near the vibrating needle where the 
velocity snr > 20 dB. area Ω includes a subset of indices 
¢ ¢
 ,n  that becomes smaller with ω because attenuation in-
creases and needle vibration amplitude decreases with fre-
quency. the standard deviation of cs(ω) estimates is found 
using the number of independent samples within Ω(ω) as 
the degrees of freedom. the number of independent sam-
ples was estimated from the 2-d autocovariance function 
for ˆ .u( , )x z

analogous to the maximum detectable particle velocity 
in section ii-a, we can estimate the minimum detectable 

shear-wave velocity from the bound on the spatial phase 
argument: | |arg ˆ .( ) <y p  the minimum detectable shear 
wave velocity from (12) is therefore ωX/π.

We close this section by comparing measurements of 
spatial phase in a gelatin gel with the exact and large-ar-
gument approximate predictions in fig. 3. clearly the ap-
proximation is accurate within measurement error even 
for ¢k xs = 1.

E. Complex Modulus From Shear Wave Dispersion

Viscoelastic parameters μ1 and η are estimated by com-
paring modeled and measured data using least-squares fit-
ting techniques: predicted values are obtained from (8) 
and measured values from (12). assuming measurement 
errors are normally distributed (0, )2s , the maximum-
likelihood principle suggests that estimates ˆ ˆm h1,  are given 
by the parameters that minimize the sum of weighted, 
squared residuals,
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there are J frequencies in the bandwidth at 50-Hz in-
tervals. Minimization was performed using a levenberg-
Marquardt method with precalculated analytical gradi-
ents [26].

F. Gelatin Gel Samples

Gelatin samples (250 bloom strength, type B, rous-
selot, Buenos aires, argentina) were constructed to test 
the method. Gelatin powder and distilled water are heated 
in a water bath at a temperature between 65 and 68°c 
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fig. 3. comparisons of the exact (solid line) and approximate (dashed 
line) solutions to the cylindrical wave equation with measured values for 
4% gelatin gel (solid-squares line) at ω/2π = 150 Hz. Good agreement 
between the three justifies the phase gradient approach of (12). note 
k xs¢  1 at x = 1 mm.
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for one hour and periodically stirred. When the sample is 
cooled to 50°c, formaldehyde is added (0.1% by weight) 
and thoroughly mixed. We also mixed in cornstarch par-
ticles (3% by weight) to introduce random acoustic scat-
terers. Molten gelatin is poured into cylindrical molds 
(11.3 cm diameter, 7.5 cm height) and allowed to congeal. 
Homogenous samples with 4% or 8% w/w gelatin concen-
trations were tested.

Material properties of the same gelatin gels were 
tested in a parallel-plate shear rheometer (Model ar-
G2, ta instruments, new castle, de) using additional 
samples. samples 2.5 cm in diameter and 0.2 to 0.4 cm 
high were removed from their molds one day after gelation 
and bonded to the rheometer plates using cyanoacrylate 
(rawn america, spooner, Wi). five percent shear strain 
was applied. for each of the 4% and 8% gelatin concentra-
tions, five samples were tested and the measured relaxed 
shear modulus was averaged, giving μ1 = 571 ± 67 Pa and 
2286 ± 315 Pa, respectively. η cannot be estimated by this 
method. although shear modulus increased quadratically 
with gelatin concentration, no change was detected with 
the addition of cornstarch particles.

iii. results

A. Phase Estimator Performance

the performance of the lag-k phase estimator (P = 5) 
compared with lag-1 estimator is known to depend on the 
echo snr and the correlation between ensemble echoes, 
i.e., the relative doppler spectral bandwidth [19], [20]. to 
help us decide when to apply each estimator, we simulated 
an ensemble of rf echo signals in one spatial dimension 
and time so we could measure velocity variances.

doppler-pulse echo simulations assumed constant par-
ticle velocities in the range gate that varied between 0 
and 8 cm/s. this range was observed experimentally in 
gelatin at 100 Hz needle vibration. We modeled scatterers 
using a white Gaussian random field scanned by a linear 
time-invariant pulse-echo system with 6-cycle pulses and 
other parameters given in section ii-a. Zero-mean, addi-
tive, white Gaussian noise was added to echoes to adjust 
the echo snr.

estimator performance was quantified from the errors 
observed using simulated echo data. if var( )1û  and var( )ûk  
are measured variances for the lag-1 and lag-k particle 
velocity estimates (M = 6 for both), the percent improve-
ment for the lag-k estimator relative to lag-1 is given by 
the factor

 x
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,k  (14)

which can be positive or negative. the echo simulator was 
validated by comparing velocity variances measured from 
simulated data to those predicted [27].

fig. 4 shows the improvement as a function of the frac-
tional doppler bandwidth that is normalized by the max-

imum detectable velocity 2ˆ .umax  this normalized band-
width is labeled σvn in fig. 4. at high echo snr (40 dB), 
the lag-k estimator provides advantages only for extreme-
ly narrow-band doppler spectra. at 10 dB echo snr, 
however, there is a 60% to 70% improvement at all band-
widths. in the 20 to 30 dB range of echo snr—the range 
of greatest experimental interest—the advantage is pri-
marily at low bandwidth. Because of long wavelengths, 
particle velocity in shear-wave imaging is nearly constant 
within a range gate. Pulse bandwidth, which has the larg-
est effect on doppler spectral bandwidth, dictates the 
relative advantage of lag-k estimation over lag-1.

We also estimated ξ for experimental data. shear wave 
recordings were repeated 19 times for 4% gelatin concen-
tration at 100, 300, and 400 Hz. the improvement factor 
is plotted in fig. 5 as a function of lateral distance from 
the needle source. We find that, although the echo snr is 
constant with x, the improvement factor ξ increases with 
x, suggesting the greatest advantage of lag-k estimation 
is at low particle velocity (low amplitude shear waves). 
the advantage stems from the reduction in doppler band-
width that accompanies lower mean velocity.

B. Modulus Measurements in Gelatin

Measured shear-wave dispersion curves for 4% and 8% 
gelatin samples are shown in fig. 6. for both concentra-
tions, measurements of three gel samples are shown along 
with best-fit dispersion model curves from (8). Values for 
μ1 and η obtained by minimizing (13) are listed in table 
i along with mean values ± standard deviation and rhe-
ometer estimates of μ1. correlation coefficients of the fit, 
r2, were computed using the method of cameron [28] as 
adapted for our application [29]. the actuator voltage am-
plitude was 15 V.

three dispersion measurements and corresponding 
best-fit model curves are displayed for one 4%-concentra-
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fig. 4. Percent improvement ξ is plotted as a function of normalized 
doppler spectrum width σvn for 10, 20, and 40 dB echo snr ratio. re-
sults are from simulated echo data.
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tion gelatin sample in fig. 7. Measurements were acquired 
for 5, 10, and 15 V mechanical actuator voltage ampli-
tudes that provided three different particle displacements 
at the needle surface. Particle displacement amplitudes at 
50 Hz estimated in gel regions immediately adjacent to 
the needle gave peak measured displacement amplitudes 
of μ5V = 86 μm, μ10V = 185 μm, and μ15V = 255 μm. 
Particle displacement amplitudes at 450 Hz were found to 
be much smaller μ5V = 0.3 μm, μ10V = 0.7 μm and μ15V 
= 1 μm. from these data, we estimated μ1 at 5, 10, and 
15 V to be, respectively, 476, 482, and 469 Pa. We also 
estimated η and found values of, respectively, 0.21, 0.21, 
and 0.18 Pa∙s. close agreement among estimates at the 
three applied strains supports the assumption of linearity 
in gelatin between 50 and 450 Hz.

iV. discussion

We compared rheometer measurements to shear-wave 
estimates of μ1 in the previous section to validate results. 

although the two measurements are based on different 
rheological models, direct comparisons between some pa-
rameters are possible [30]. the Maxwell model is often 
used in the constitutive equation describing shear rheom-
etry. We found a third-order Maxwell model represents 
rheometer measurements in gelatin [31] with the time-
varying shear modulus

 G t G G e G e G et t t( ) = ,0 1 1 2 2 3 3+ + +- - -/ / /t t t  (15)

for constants Gi and τi. the relaxed modulus of the Max-
well model is G0, which we obtain at t ≫ τmax where G(t 
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fig. 5. Percent improvement ξ is plotted as a function of lateral distance 
from the source for 100, 300, and 400 Hz shear wave frequencies. results 
are measured from gelatin gels.

fig. 6. Measurements of shear wave dispersion in six samples, three 
each with 4% and 8% gelatin concentration. lines are best-fit dispersion 
models used to estimate the complex moduli listed in table i. for both 
concentrations, measurements from sample 1 are indicated by a circle, 
sample 2 by a diamond, and sample 3 by a square.

taBle i. Viscoelastic Parameter Measurements for Gelatin 
Gels. 

μ1 [Pa] η [Pa s] r2

4% Gelatin
 sample 1 469 0.18 0.87
 sample 2 564 0.17 0.83
 sample 3 680 0.27 0.85
 average 571 ± 105 0.21 ± 0.06
 rheometer 571 ± 67
8% Gelatin
 sample 1 3323 0.47 0.1
 sample 2 3173 0.34 0.8
 sample 2 2708 0.7 0.5
 average 3068 ± 321 0.84 ± 0.45
 rheometer 2286 ± 315

fig. 7. Measurements of shear wave dispersion in one 4% gelatin sample 
for actuator voltages set to 5, 10, and 15 V. lines are best-fit dispersion 
models used to estimate the complex modulus. equivalence of the three 
responses demonstrates the linear mechanical response of the gelatin 
gel.
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→ ∞)  G0. comparing this result with the complex 
modulus of the KV model in the frequency domain, μ(ω) 
= μ1 − iωη, it can be shown that G0 from rheometry is 
comparable to μ1 from shear wave imaging. these values 
may be compared in table i. unfortunately, no similar 
relationship exists between η and Maxwell model param-
eters. We compared measurements in fresh and damaged 
liver tissues with those reported by other labs using differ-
ent techniques, and we found general agreement for cs(ω) 
[32]. inter-lab consistency may help validate viscoelastic 
measurements in complex-structured tissues.

rheological models help us parameterize the viscoelas-
tic behavior of materials: the Kelvin-Voigt model describes 
creep; the Maxwell model describes stress relaxation. of 
the two, the Kelvin-Voigt model is thought to be more 
representative of shear wave propagation through gelatin. 
However, the Zener model (series connection of an elastic 
spring and a Kelvin-Voigt unit) is the simplest model that 
predicts both phenomena in linear viscoelastic polymeric 
solids [33]. We now summarize its frequency response in 
the context of our analysis.

the complex modulus that results from the Zener mod-
el is given by [33]
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w t
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where μ1 = μZ(0) is the relaxed modulus and τσ and τε ≥ 
τσ are time constants.

the complex wave number for the Zener model is 
k c is

Z
Z s

Z
s
Z= ( ) =2 1 2rw m w a/ // + , which can be expressed 

in terms of shear wave speed and attenuation coefficient 
using
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K, Z indicates that parameters from either the Kelvin-
Voigt or Zener models may be applied.

We estimated parameters of the Zener model for the 
same gelatin sample data described previously, and we 
list them in table ii. these may be compared with results 
from table i. the small difference between μ1 results for 
the KV model in the two tables depends on whether data 
from three samples were first averaged and then fitted to 
a model (table ii) or if data from each sample are fitted 
and μ1 values averaged (table i).

eq. (17) is fitted to the averaged dispersion measure-
ments from 4% and 8% gelatin concentration, and the 

results are shown in fig. 8. averaged measurements are 
also plotted with standard errors indicated. for both mod-
els, the shear speed at low frequency is m r1/ , increasing 
monotonically with ω. However, the Kelvin-Voigt model is 
unbounded cs(∞) → ∞, whereas the Zener model is 
bounded by cs(∞) → μ1(τε/τσ). in the 50 to 450 Hz shear-
wave bandwidth, the two models agree within measure-
ment uncertainties, and therefore each represents mea-
surement in gelatin gels equally. only at higher frequencies 
do the two models diverge. frequency characteristics of 
viscous losses have also been quantified using a quality 
factor Q k ks s( ) = 2 2w -Â{ } Á{ }/  or its inverse Q−1 called 
the dissipation factor [33]. relaxation peak of the Zener 
model is located at f0 = 1/(2πτ0) where t t te s0 =  and 
represents a peak of viscous loses. for the estimated prop-
erties for 4% and 8% gelatin estimated relaxation peaks 
are located at f04% = 503 Hz and f08% = 481 Hz.

V. conclusion

We have described a method for measuring the complex 
shear modulus of hydrogel samples. eventual applications 
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taBle ii. estimated Parameters from Zener (Z) and Kelvin-
Voigt (KV) Models are compared With G0 from rheometry in 

4% and 8% Gelatin. 

Gelatin μ1 [Pa] τε [ms] τσ [ms]

4% Gelatin
 Z 563 0.53 0.2
 KV 570
 rheometer G0 = 571 ± 67
8% Gelatin
 Z 2836 0.53 0.21
 KV 2919
 rheometer G0 = 2286 ± 315

fig. 8. average shear-wave dispersion measured for 4% and 8% gelatin 
concentrations and best-fit model curves. the dashed lines are for the 
Kelvin-Voigt model and solid lines are for the Zener model. error bars 
indicate one standard error based on measurements from three samples 
each.
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of these measurements include the basic-science goal of fol-
lowing changes in the mechano-environment of 3-d cell cul-
tures undergoing malignant cell transformations and tumor 
development. More detailed knowledge of cellular mechano-
biology on the scale of a millimeter is expected to help il-
luminate the role of elasticity imaging in cancer diagnosis.

We generated shear waves by vibrating a thin needle 
along its long axis. this geometry provided closed-form so-
lutions to the shear wave equation that yielded a Green’s 
function describing how wave energy propagates and is dis-
sipated in the surrounding medium. long needles induce 
extended and predictable fields of shear waves that yield 
high velocity snrs for materials characterization below 
450 Hz. We image time-harmonic waves under steady-state 
conditions to use lag-k estimators of phase, thus improving 
the reliability of shear-wave dispersion measurements for 
modulus estimation. our approach lends itself to accurate 
estimation of the complex shear modulus parameters. ac-
curacy of the elastic shear modulus estimates was verified 
through comparisons with the relaxed modulus from paral-
lel-plate rheometry, where agreement was observed.

the current method is based on an inversion of the 
shear-wave dispersion equation. one limitation of this 
method is that measurements at several frequencies must 
be obtained to estimate each complex modulus value. fur-
thermore, material homogeneity and reflectionless bound-
aries are assumed within the measurement region, which 
is a reasonable assumption for our proposed applications. 
therefore the phase-gradient method is an acceptable 
method for measuring a modulus from velocity estimates.

one alternative approach to needle vibration is to ap-
ply an amplitude-modulated acoustic radiation force to a 
sphere placed in the medium [29], [34], [35]. an oscillating 
sphere produces shear wave energy that also has known 
closed-form expressions, and thus permits quantitative me-
chanical analysis of the medium. However the dipole radia-
tion pattern is more complex and more heterogenous within 
any doppler imaging plane. However, radiation force offers 
the best opportunity for extending the stimulus force fre-
quency above 500 Hz, where clear distinctions among rheo-
logical models become more apparent. the displacement 
amplitude of mechanical actuators mechanically loaded by 
a needle placed in a viscous gel is significantly reduced at 
higher frequencies because of the actuator itself or from 
needle slippage. the snr for velocity estimates becomes 
the limiting factor when imaging shear waves above 500 Hz 
not only because precise force patterns are difficult to gener-
ate, but also because of wave divergence and absorption at 
distances greater than a couple millimeters from the source. 
We conclude that accurate measurements of the complex 
shear modulus may be achieved with needle vibration in 
viscoelastic hydrogels up to 450 Hz.

appendix

this appendix shows that the model for the spatial 
phase gradient of shear waves described by (10) is related 

to lateral estimates of spatial phase from (11) by the equa-
tion d /d /y yx X arg ˆ .( )  this discussion follows a deriva-
tion by jensen [17].

the analytic signal for particle velocity as a function of 
lateral position ¢̂u ( )x  is a function of the Hilbert transform 
of velocity ˆ ,uh x( ) namely:
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noting explicitly that x is sampled and that y y[ ] ( [ ])  x , 
we have
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using the identity
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we find
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turning to measurements, the kernel of the lag-1 cor-
relation estimate without averaging is
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thus, we can write
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and finally
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provided X ≪ 2πcs/ω.
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