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Abstract—An ultrasonic shear wave imaging technique is being
developed for estimating viscoelastic properties of hydrogels.
A needle placed in the medium is vibrated along its axis to
generate harmonic shear waves. Doppler pulses synchronously
track shear wave propagation to estimate the local speed. Fitting
shear-wave speed estimates to the dispersion relation obtained
from two rheological models, we estimate the complex shear
modulus, viz., elastic and viscous components. The dispersion
equation estimated using the standard solid-body (Zener) model
is compared to that from the Kelvin-Voigt model to explore
the frequency landscape of hydrogel viscoelasticity within the
50-450 Hz shear wave bandwidth. We found both models give
comparable estimates that each agree with independent rheome-
ter measurements obtained at lower strain rates, as might be
expected form these highly elastic gels.

I. INTRODUCTION

Elasticity imaging techniques have shown great potential for
assessing the mechanical environment surrounding malignant
mammary cells, and yet the mechanisms responsible for in
vivo elasticity breast imaging contrast remain poorly under-
stood. Epigenetic factors, such as the mechanical properties
of extracellular matrix (ECM) — interstitial fluid interactions,
and the presence of signaling proteins, work together to
determine the growth rate of transformed cells that initiate
malignant breast tumors [1]. Because genetically transformed
cells are encouraged to grow and form malignant tumors when
placed in a stiff mechanical environment, images of viscoelas-
tic properties convey important diagnostic information. The
biphasic nature of the mechanical response, whereby solid
ECM polymers are surrounded by interstitial fluids, suggest
that breast tissues may respond as a poro-viscoelastic material.
The degree of poroelasticity versus viscoelasticity depends
strongly on the strain rate, as determined by the shear wave
frequency. Interactions between fluids flowing through the
polymer, and their spatial variations, is the most likely cause
for contrast in the elasticity images. Consequently, we are
exploring contrast mechanisms by developing techniques that
extend our quasi-static (< 1 Hz) measurements to higher
shear-wave frequencies.

The initial study summarized in this report is to develop
the measurement technique. It focuses on elastic collagen
hydrogels of the type using for 3-D cell cultures. They have
a weak viscoelastic responses, mostly elastic, but they are
well studied materials. The basic measurement is also well-
known: a Doppler probe tracks shear wave particle motion that
leads to the estimation of local shear-wave speed. Assuming a

rheological model, dispersion equations are derived that are fit
to the speed measurements to estimate the complex modulus,
W= 1 — iwn, where pq is the elasticity shear modulus and
n is the viscous shear modulus. Here, the accuracy of the
estimation techniques are tested for a largely elastic response.
In a second report at this conference, however, we apply these
methods to liver tissues where we find a strong viscoelastic
response and model dependent differences.

II. METHODS

A. Experimental setup

The shear wave imaging experiment is diagrammed in
Fig. 1. A mechanical actuator harmonically vibrates a 1.5-mm-
dia needle along the z axis at single frequencies in the range
of 50-450 Hz. Narrow-band shear waves radiate cylindrically
from the needle and are imaged in the z, z plane using a linear-
array, pulsed-Doppler probe (SonixRP, BW-14/60, Ultrasonix
Medical Corporation, Richmond, BC). The axes of the needle
and linear-array beam are separated by angle 6. This type of
excitation is efficient at generating shear waves in the medium,
giving a high echo SNR for Doppler estimates over a region
of several square millimeters.

B. Doppler estimation

The Doppler probe was excited by 6-cycle pulses at a center
frequency f. = 6.67 MHz. The nominal echo frequency
was f. = 6 MHz, which is used for velocity calculations
in the following analysis. Shear wave excitation and Doppler
acquisitions were synchronized. In the lower half of the Fig. 1
we present a Doppler acquisition timing diagram. A packet of
3000 pulse-echo acquisitions was obtained at a pulse repetition
frequency PRF = 10 kHz for a total acquisition time at each
line of sight of 75 = 300 ms. Subsequently, the beam-axis
was translated along the array by an element pitch and the
acquisition was repeated until we obtained the entire field of
view for each shear wave frequency.

Particle velocity is estimated from the phase shift measured
between Doppler echoes during shear wave propagation. The
standard Kasai velocity estimator is based on lag-one echo
correlation using pulse-pair processing [2]. Our harmonic
shear waves generate a narrow-band Doppler spectrum at
low Doppler frequencies (< 500 Hz), which increases the
inter-pulse correlation for the ensemble and thus provides an
opportunity to extend the lag-one correlation approach for
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Fig. 1. The shear wave imaging experiment is depicted. A mechanical
actuator harmonically drives a stainless steel needle which is the source
of cylindrical shear waves. A linear array tracks the shear wave via pulsed
Doppler methods. In the lower half of the figure, Doppler acquisition scheme
is illustrated.

reducing estimation variance. Specifically, we adopted the lag-
k estimator that averages estimates of the linear phase at k time
lags [3]. The variance of velocity estimates is lowered because
the echo noise is zero mean and signal independent.

We collected M’ = 500 ensembles of M = 6 pulses where
1 < m’ < M’. Each ensemble provides a single phase
estimate. We compute the complex echo waveform V' [¢, n, m]
from the RF data, where index 1 < ¢ < L counts A-lines
along the lateral direction, index 1 < n < N counts samples
along the axial direction (fast time), and index 1 < m < M
counts echo waveforms in the ensemble (slow time).

We estimate the k-lag correlation function between elements
of the ensemble via

M—k

kZV*Enm
(1)

where 1 < k < P < M. To estimate the echo phase, we
combine individual k-lag estimates in a manner that resolves
the phase ambiguity,
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The instantaneous velocity © is therefore [2], [4]
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where c is the compressional-wave speed of sound in the gel
medium (1.5 mm/us) and arg(-) indicates the phase angle
obtained from the arctangent of the ratio of imaginary to real
parts of the argument.

Selecting P = 1, Eq. (2) and (3) are reduced to the
standard lag-one autocorrelation estimator [2], [4]. In the work
presented below, we set P =5 = M — 1.
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C. Phase gradient estimator

There is a simple analytic solution to the wave equation
that describes harmonic cylindrical shear waves propagating

from a long needle in a homogeneous medium [5]. It gives
the particle displacement along the z-axis (see Fig 1) as
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where H(gl) is the zeroth-order Hankel function of the first
kind, z is the radial distance from the needle in the z, y plane,

ks is the shear wave number at radial frequency w. Particle
velocity is found from the time derivative of Eq. (4),
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For large k,z, H(()l) — %e“(ksm_”/‘l)] [6]. Thus, after

much algebra, it can be shown that Eq. (5) is approximately

w 2
v(z,t) = 4\ Tk

eilher—wi=5) — V()1 (@) (6)
Vo(x) is the spatially-varying velocity magnitude; it is multi-
plied by temporal and spatial phase terms. The spatial phase
factor for particle velocity is a linear function of z. Its first
derivative is

d¢ w
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Thus shear wave speed is estimated from the spatial phase
gradient of particle velocity as measured from Doppler signals.
In practice, the x axis is sampled according to the array pitch
Az = 460 pm, such that z = (Ax.

Beginning with the expression for particle velocity from Eq
(3), we compute its analytic signal, ©'[¢,n,m'], so that we
can estimate the spatial phase between lateral echo lines, via
index /¢, in the direction of the linear array elements. Defining
a spatial ensemble of L. = 4 lateral echo lines, we compute
the lag-one correlation estimate for the ensemble using

DI n,m'] 72027811771 Op [+ 1,n,m']. (8)

We then drop the left-most echo line and add the next adjacent
echo line to the right and repeat estimates over index ¢'. For
128 lateral echo lines in an acquisition frame, we can obtain as
many as 121 spatial phase estimates using this running average
technique.

Jensen [2] showed, after considerable algebra, that d¢/dx
from (7) is approximately (arg ¢))/Ax from (8). Thus (7) gives
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Choose a region of interest (ROI) close to the needle, the mean
and standard deviation for c, is estimated at each w. Shear
wave dispersion relations connect ¢, to the complex modulus,
as we now show.



D. Shear wave dispersion

Harmonic shear wave propagation in complex media is
governed by frequency of excitation and material properties.
An important quantity for the shear wave motion analysis is a
complex shear wave number k, = (pw?/p)'/?, where p is the
mass density, w is the angular shear-wave frequency, and p is
the complex shear modulus of the material. The complex wave
number can be written as a function of the shear wave speed
and shear wave attenuation constant ks = w/cs —ias. Material
properties are related to cg through rheological models of
mechanical behavior.

The Kelvin-Voigt model, Fig. 2, is commonly used to de-
scribe viscoelastic effects for shear wave imaging application.
Complex modulus of the Kelvin-Voigt model is p’(w) =
w1 — iwnx where iy is the relaxed modulus (1% |, o= 1)
and ng is the viscous component. We compared Kelvin-Voigt
model with a standard solid model or Zener model, Fig. 2,
which is often used to represent polymer dynamics [7]. The
complex modulus of the Zener model is given by
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where 1 = pu? |, o= kika/(ki+ks) is the relaxed modulus
and 7, = nz/(ki + k2) and 7. = nz/ks > 7, are the
relaxation times, respectively.

Shear wave speed and attenuation can be calculated with
the same analytical expressions for both models
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where indexes K or Z denote Kelvin-Voigt or Zener model
respectively. [8], [9]

Frequency characteristic of viscous loses are often quan-
tified by the quality factor Q(w) = —R{k2}/3{k?} whose
inverse @1, is called the dissipation factor. For Kelvin-Voigt
model Q¥ (w) = 1/(w7) where 7 = 1z/p1 and for Zener
model Q% (w) = (1 + w?7e7,)/w(Te — o))

III. RESULTS

Experiments were conducted on homogenous hydrogel
phantoms of 4% and 8% gelatin concentrations. Three samples
were tested for 4% concentration and two samples for 8%
concentration. Speed measurements were averaged separately
for both concentrations. We conducted rheometer experiments
to independently estimate the storage modulus at both gel con-
centrations. Five samples were measured at each concentration
and averaged.

Fig. 2. (a) The Kelvin-Voigt model is diagrammed. Model consists of a
elastic component p1 in parallel with the viscous component 7. (b) The
standard linear solid or Zener model is illustrated. It is a series combination
of elastic and Kelvin-Voigt units.
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Fig. 3. Comparison of shear wave speeds as a function of frequency for the

Kelvin-Voigt model and the Zener model at two gelatin concentrations, 4%
and 8%. Models are consistent at low frequencies but diverge above 500 Hz.

In Fig.(3), we present c; measurements for both gel con-
centrations. These data are numerically fit to Eq. (11) via
nonlinear regression for the Kelvin-Voigt and Zener models.
The shear speed for both models approaches the low frequency
limit of ¢&#(0) = \/u1/p, monitonically increasing with
w. The Kelvin-Voigt model give a speed that is unbounded,
cE(w) |o—oo= 00, whereas the Zener model is bounded by
the unrelaxed modulus, ¢Z(w) |v—oo= py = p1(7e/7s).
The two models overlap within measurement error over the
measurement bandwidth.

Fit parameters are listed in Table I. At the 4% gelatin con-
centration, we find agreement within 3% among relaxed mod-
uli estimated using the two rheological models to that from
the rheometer. At 8% gelatin concentration, the agreement is
within 22%, which is consistent with our previous findings
that inter-sample variability dominates at 20% of the mean.
The variabilities are primarily because of gel preparation [10].

In Fig.(4), the predicted dissipation factor is evaluated be-
tween 0 and 10* Hz for the average moduli estimated for both
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Fig. 4. Dissipation factor as a function of frequency for the Kelvin-Voigt

model and the Zener model for two gelatin concentrations of 4% and 8%.

TABLE I
ESTIMATED VISCOELASTIC PARAMETERS

Model p1 [Pa] ni [Pas] | k1 [Pa] | ko [Pa] | nz [Pas] ‘
Gel. 4%
KV 570 0.21
Zen. 563 1407 938 0.47
Rh. 571 £ 67
Gel. 8%
KV 2919 1.0
Zen. 2836 7288 4642 2.46
Rh. 2286 + 315

models and at both gelatin concentrations. Both gels are highly
elastic at low frequency, and there is little difference between
models below 500 Hz. At higher frequencies, the Kelvin-Voigt
model predicts increasing dissipation whereas the Zener model
predicts decreasing dissipation, ultimately becoming elastic
behavior at frequencies greater that 1 kHz. The relaxation
peak of the Zener model is located at fo = 1/(277y) where
To = +/TeT, and represents a peak of viscous loses. For
the estimated properties for 4% and 8% gelatin estimated
relaxation peaks are located at fi”* = 503 Hz and f5” = 481
Hz, respectively.

IV. CONCLUSION

A shear wave imaging method based on the Doppler es-
timation of shear wave propagation excited by the vibrating
needle is presented. Quantitative estimation of the viscoelastic
properties is demonstrated on soft gelatin samples. We show
how to relate parameters of the Kelvin-Voigt model used to
quantify material response to the shear wave propagation to
parameters obtained with rheometer tests. Moreover, we have
considered the higher-order Zener model for characterizing
hydrogel response within the given bandwidth of the mea-
surement.

Within the testing bandwidth, hydrogel exhibits strong
elastic behavior and differences between the two models is

negligible. Therefore either model is representative of gelatin
gels between 4% and 8% concentrations. Increasing the mea-
surement bandwidth above 450Hz would provide a means to
differentiate between the two models. Soft biological tissues
have a greater viscoelastic response than gels and therefore
it may be clear which of the two rheological models best
represents the mechanical responses in the 50-450 Hz range.
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