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ABSTRACT

First-principle approaches to the design of medical ultrasonic imaging systems for specific visual tasks are being
explored in this paper. Our study focuses on breast cancer diagnosis and is based on the ideal observer concept
for visual discrimination tasks, whereby tasks based on five clinical features are expressed mathematically as
likelihood functions. Realistic approximations to the ideal strategy for each task are proposed as additional
beamforming to maximize diagnostic image information content available to readers. Our previous study showed
that a spatial Wiener filter (SWF) beamformer, derived as a stationary approximation of the ideal observer
and operating on RF echo data, generally improved discriminability except for one case involving high-contrast
lesions. This study explores an adaptive, iterative spatial Wiener filter (ISWF) beamformer that includes a
lesion segmentation algorithm to overcome the stationarity assumption and improve discriminability for high-
contrast lesions. Predicted performance is compared with that measured from trained human observers using
psychophysical methods. We found the greatest feature enhancement of the delay-and-sum beamformer followed
by SWF occurs at the image formation step where RF data are converted into B-mode data. The Smith-Wagner
computational observer, which operates on the B-mode instead of RF data, was applied to indicate performance
lost by envelope detection. ISWF was found to match the performance of SWF for low-contrast lesions and
increase the performance for the high-contrast tasks. The ISWF beamforming approach offers greater diagnostic
performance for discriminating malignant and benign breast lesions, and it provides a rational basis for further
task-specific imaging system design.
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1. INTRODUCTION

Medical ultrasonic imaging systems transmit relatively narrow-band (50-100% bandwidth) sound pulses into the
body. Echoes produced by interactions with tissue scatterers are measured with an array of phase-sensitive
receivers and combined to produce beamformed radio frequency (RF) signals that constitute the lines of a B-
mode image. Patient information is encoded in the amplitude and phase of the RF signals, but, because human
observers can not process signals with the carrier frequency, RF signal are demodulated before rendering. Such
processing of narrow-band, coherently detected echoes that originate from random scattering media generates
image speckle.18 Speckle spots are packets of diagnostic information about tissues, and yet they do not faithfully
represent the appearance of organ tissues. Investigators have attempted to reduce the speckled appearance of
images by B-mode image processing.6 The effectiveness of each speckle reduction technique varies depending on
the clinical task, but all inevitably reduces diagnostic information.

The ideal observer (IO) strategy regarding system design for lesion detection1,19 suggests that information
is maximized by reducing the size and increasing the number of speckle spots. This is achieved by improving
the spatial and contrast resolution via enhanced beamforming techniques while maintaining system linearity and
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the echo signal-to-noise ratio (eSNR). Basic Fourier optics analysis suggests that we shorten the pulse duration
and increase the detector aperture area to concentrate into a small volume as much of the transmitted sound
energy as possible. Beam diffraction, sound absorption, and phase aberrations ultimately limit the utility of this
straightforward approach, which has prompted investigations into synthetic aperture methods7,8 and other types
of pre- and post- beamformed RF signal filtering.9–12 Filtering techniques are by necessity adaptive, requiring
detailed knowledge of the system’s spatiotemporal response and some specific knowledge of tissue statistics and
heterogeneity to realize performance enhancements.

We have adopted the ideal-observer strategy of spatially filtering post-beamformed RF echo data in an
attempt to improve detection performance for five lesion features closely associated with clinical sonographic
breast cancer detection.1,4 Working in the sampled signal domain, we modeled the RF echo signal as the
output of a linear system, and applied stationary Gaussian distributions to model the scattering object and
noise.17 Assuming the isoplanatic response of a linear shift-invariant system, the RF data corresponding to each
B-mode image was simulated from one of two classes of correlated multivariate Gaussian distributions. This
two-class discrimination task led to an ideal observer decision variable that is quadratic in the echo data and
involves the inverse covariance matrix for each class. Large nonstationary covariance matrices were separated
into stationary and nonstationary parts and expanded in a power series to facilitate fast computation of their
inverses.1 The linear term in the power series showed that a spatial Wiener filter (SWF) applied to RF data
before envelope detection approximated the ideal observer strategy provided the lesions were of low contrast so
that the scattering field was approximately wide-sense stationary. We explored the effect of the SWF on task
performance comparing the efficiency of human observers viewing images of filtered data with respect to the
standard B-mode images. Human observer performance was evaluated through 2AFC psychophysical studies
using a panel of five tasks. These tasks isolated features of breast lesions that radiologists typically use to
detect breast lesions and discriminate malignant tumors from benign. We found that SWF improves observer
performance over conventional B-mode beamforming for four of the five tasks, but surprisingly we found it
reduced performance for the one high-contrast lesion task.

In this paper, we more closely examine the effects of the SWF on the clinical tasks, and from the analysis
we propose an adaptive method that further improves observer performance. The proposed method addresses
deficiencies in the application of the power series expansion to calculate the inverse of the covariance matrices,
which in return improved the validity of the linear approximation. The new technique employs an iterative
process to compute a filter that adapts to the properties of each RF data set. We call the approach the iterative
spatial Wiener filter (ISWF). Observer and machine experiments show that the new filter improves performance
for all tasks. Image data is now simulated by using the Field II program21,22 to simulate the impulse response
of typical one-dimensional linear arrays, instead of using Gabor pulses; that is a 2-D Gaussian pulses modulated
along one axis by the carrier frequency as in our previous studies.1 The comparison between the results of using
the two pulses is also discussed in this paper.

2. BACKGROUND AND LITERATURE REVIEW

In this section, we summarize our previous research,1 where the ideal observer strategy motivated the SWF
approach in the RF data domain.

2.1 System modeling

A model of image formation is depicted graphically in Fig. 1, in which the variance profile determines whether
the lesion has the features of a benign or malignant breast tumor. The object being imaged f is arranged from
a 2D scattering field into a column vector by lexicographical ordering. Then the RF data can be modeled as a
noisy linear transformation of the scattering object, given by

g = Hf + n, (1)

where g is the vector of RF frame data and H is the system matrix characterizing the transformation. The
isoplanatic assumption allows us to represent H as a Toeplitz-block Toeplitz matrix. n is the object independent
system noise, a zero-mean Gaussian random noise process with variance σ2

n.
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Figure 1. A graphical model of ultrasonic signal processing. The top row shows the formation of a standard B-mode
image from a scattering object. H represents a linear shift-variant system where each row is a shifted copy of the impulse
response function generated using Field II program.21,22 The bottom row shows the RF data after being SWF filtered
and the corresponding B-mode image.

Let H1 be the hypothesis that f represents scattering from a benign lesion and H2 be the hypothesis that
f is from a malignant lesion. We model scattering amplitude of tissue under both hypotheses as a zero-mean,
multivariate normal (MVN) process, with a common scattering variance, σ2

obj, that characterizes the overall
intensity. The difference between the two hypotheses is encoded in diagonal deviation matrices S1 and S2. Thus
the distributions of f under each hypothesis are given by

H1 : f ∼ MVN (0, σ2
obj(I + S1))

H2 : f ∼ MVN (0, σ2
obj(I + S2)) (2)

The elements of diagonal matrix S1 and S2 can be positive or negative, but they must be greater than -1 to
ensure positive variance. In Fig. 2 we display five modeled features for S1 and S2, corresponding to five typical
tasks involved with cancer detection.

Combining equations (1) and (2), we find the RF data for the two hypotheses are also multivariate normal:

H1 : g ∼ MVN (0,Σ1)
H2 : g ∼ MVN (0,Σ2) (3)

where
Σi = σ2

objH(I + Si)Ht + σ2
nI (4)

All information about the scattering object and system is contained in the covariance matrices Σi. B-mode data
are scan converted to produce B-mode images using the non-linear operator O, such that b = Og.

2.2 Ideal Observer
The test statistic for binary hypothesis testing is given by the ratio of the probability density function for RF
data in H2 to that in H1.23 By taking the logarithm of this ratio and ignoring terms unrelated to the data, we
obtained the decision variable for the ideal observer, given by
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Figure 2. Variance profiles of “Malignant” and “Benign” scattering objects of the five tasks. The third row is the difference
in variance profiles. The five tasks represent: detection of a hypoechoic lesion (Task 1), discrimination of an elongated
eccentric lesion from a circular lesion (Task 2), discrimination of a soft, poorly defined boundary from a well-circumscribed
lesion (Task 3), discrimination boundary irregularities from a smooth boundary (Task 4), and discrimination hypoechoic
from anechoic lesion interiors (Task 5)1

λ(g) = ln
p(g|H2)
p(g|H1)

∼= 1
2
gt(Σ−1

1 − Σ−1
2 )g. (5)

There is a computational challenge in calculating the ideal observer (5), because Σi are too large to be inverted
accurately using straightforward computing methods. In next step, we will explore the technique for inverting
these large non-stationary covariance matrices.

2.3 The spatial Wiener filter

Assuming H is a circulant matrix, we can separate the covariance matrices into stationary and non-stationary
components,

Σi = σ2
objHHt + σ2

nI + σ2
objHSiHt

= Σ0 + ΔΣi , (6)

where Σ0 is the stationary part, whose inverse can be efficiently calculated by a Fourier technique,23 and ΔΣi

is the non-stationary part that depends on variance profile Si .

Expanding Σ−1
i in a power series and truncating after the first order term, we obtain the linear approximation

of the ideal-observer test statistic,

λ(g) ≈ σ2
obj

2
gtΣ−1

0 H(S2 − S1)HtΣ−1
0 g. (7)
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Figure 3. (left) Pulse-echo psf of a system generated by the Field II program. (right) Examples of standard and spatial
Wiener filtered B-mode images from the same RF data for task 4

The factors HtΣ−1
0 g are recognized as the spatial Wiener filtered version of RF data. It suggests that applying

the SWF to the RF data before envelope detection recovers some diagnostic information that would otherwise be
lost. Thus spatial Wiener filtering in the RF domain may improve the efficiency for visual discrimination tasks.

3. IMPLEMENTATION AND DISCUSSION ON THE SWF

3.1 Methods
The Fig. 3 (left) shows the 2-D pulse-echo point spread function (psf) of the system at focus generated by
the Field II program.21,22 Parameters were set to model the Siemens Antares system response at a 40-mm
transmit/receive focal length with a VF10-5 1-D linear array transducer. We use 7.2 MHz carrier frequency
sampled at 40 MHz, which results in an axial sampling interval �x = 0.02mm and a lateral sampling interval
�y = 0.1mm. Element pitch was set to 0.198 mm with 5% kerf, and the transmit and receive apertures were 10
mm × 20 mm (96 elements). The bandwidth was set to 51% of the carrier frequency, and the echo SNR of the
system was 45.5 dB. From shift invariant pulse-echo impulse response, we constructed a circulant system matrix
H used to both model the RF data and develop the SWF.

By assessing the five clinical tasks in Fig. 2, we quantify how much information is lost when converting from
RF data to envelope images, and how much information can be recovered by applying the SWF to the RF data
before computing the envelope. The five clinical tasks were based on candidate features that trained experts are
likely to look for in the process of discriminating malignant from benign breast lesions with ultrasound. The
scattering object used in simulation is defined by its variance profile, which is classified as either “malignant”
or “benign” as shown in Fig. 2. Examples of standard and SWF B-mode images for task 4 are shown in Fig. 3
(right). In each task, the controlled parameter determining the difficulty of the task is the difference between
the variance maps under the two hypothesis. To place all tasks on a common scale, we define an object contrast
factor as the integrated absolute value of the difference between the malignant variance profile and the benign
one normalized by the object variance, given as

C =
∑

i

|[S1 − S2]ii |�x�y . (8)

The information loss when converting from the RF data to the envelope image is evaluated through the
observer efficiency which is calculated by combining the ideal observer on the RF data in (5) and the Smith-
Wagner observer, acting as the ideal observer on envelope images, given by

λSW(b) = bt(S2 − S1)b. (9)
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Figure 4. The Fourier transform of Si versus spatial frequency ux for task 3 and task 5. At high spatial frequencies, the
frequency spectra of for the two tasks are separated in task 3 (left) while the magnified view shows that they are on top
of each other in task 5 (right).

The ideal observer test statistic, λ(g), is calculated by using the iterative implementation of the power series.1

However, unlike our previous research that uses the Gabor pulse as the psf of the system, the psf generated by
Field II has fine structure that extends significantly outside the main lobe of the beam. Consequently when
calculating the inverse of the non-stationary covariance matrix, up to 50 terms of the power series are required
for the Field II generated psf to reach convergence instead of 10 terms as in the previous research for the Gabor
pulse generated psf.

For the ideal observer and Smith-Wagner observer, 2000 pairs of images were generated for each task. If we
let g1,i be the RF frame from H1 in the ith trial and g2,i be the RF frame from H2, then the trial score, oi, is
given by

oi = step(λ(g2,i) − λ(g1,i)) (10)

where the step function is equal to 1 for positive argument and 0 for negative. The proportion correct, PC , is
defined as the expectation of the trial score. Under general assumptions, PC is monotonically related to the
detectability index as23

dA = 2erf−1(2PC − 1), (11)

in which erf−1 is the inverse error function. If we define Cenv as the object contrast factor for Smith-Wagner
observer viewing the envelope data, and CRF as the contrast parameter setting that produces the equivalent
performance in the ideal observer viewing the RF data (dA−SW = dA−Ideal), then the observer efficiency, or the
information loss, when converting from the RF data to the envelope images is approximated by,

η = 100% × CRF

Cenv
. (12)

Human-observer performance was assessed through 2AFC psychophysical studies. A total of 4 observers
participated in the experiments. The experiments have been carried out at the Vision and Image Understanding
Lab, University of California, Santa-Barbara. Pilot studies on independent sets of images were used to find object
contrast factors such that human observer performance in the standard B-mode images would be approximately
80% correct. This performance level leaves reasonable range for investigating the improvement due to signal
processing.24 In each task, the standard B-mode images and the various post-processing envelope images were
generated from the same RF data.

3.2 Discussion of SWF

In previous studies,1 we found that application of the SWF improves the visual detection performance for the
first four tasks, but reduces detection performance in task 5. We begin our discussion by investigating what
is different in the five visual tasks. The third row of the Fig. 2 shows differences between “Malignant” and
“Benign” variance profiles of the five tasks. The difference in tasks 2-4 is primarily in edges of the lesions and
thus at high spatial frequency, while that in task 1 and task 5 is in the contrast inside the lesions. However, in
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Figure 5. The normalized power spectra of the ultrasonic pulse with and without SWF

task 1 the wide-sense stationary approximation holds for the low-contrast lesions of each individual image much
better than it does for the high-contrast lesions of task 5. Therefore the linear approximation is nearly ideal and
we do not expect any processing to significantly improve observer performance for task 1.

Let’s consider the edgy tasks 2-4, where human observer efficiency for standard B-mode imaging is known to
be very low.1 Fig. 4 (left) shows that the difference in the frequency spectra for the lesion of task 3 under the
two hypotheses is clearly at high spatial frequencies. However, there is almost no difference in those spectra for
the high-contrast/very high-contrast detection of task 5 (Fig. 4, right). Furthermore, Fig. 5 show that the SWF
acts to spectrally ‘whiten’ the system response function, which it can do for our relatively high eSNR conditions.
SWF enhances high frequencies by decorrelating the RF signals. Decorrelation is not new topic, but we now have
a first-principles reason for applying it! We may also think of the SWF as suppressing low frequencies in favor of
high frequencies. Put yet another way, the SWF improves performance for edgy tasks by providing the decision
maker with more statistically independent image samples. Since the information in tasks 2-4 is concentrated
near the boundary region, adding independent samples influences performance significantly.

Why does the high-contrast nature of each lesion in task 2-4 not also negate the stationary assumption as it
did in task 5? The answer appears to be that the ideal observer is seeking a signal known exactly (SKE), and
therefore ignores the filtering errors at the lesion interior for task 2-4. The SKE nature of the human experiments
allows them to do the same. In task 5, all the information is at the center of the lesion, so that region cannot be
ignored when deciding. The SWF, which is designed to filter the background region, will naturally fail to improve
performance in task 5. Thus we find our motivation for developing an adaptive spatial filter that improves the
performance of the linear approximation to the ideal strategy. The alternative is to add more terms to the power
series expansion of the covariance matrices which does not advise a clear method for generating images.

4. ITERATIVE SPATIAL WIENER FILTER

4.1 The adaptive filter
The linear approximation to the power series of (I−A)−1 ≈ I+A is a good approximation iff all eigenvalues of A
are much smaller than 1. This condition is reasonably well met for tasks 1-4 but not 5. Instead of separating the
covariance matrix into stationary and non-stationary components, we combine them into average and difference
matrices. Denoting Sa = 0.5(S1 + S2) and �Sa = 0.5(S2 − S1), the associated covariance matrices become
Σ1 = Σa −�Σ and Σ2 = Σa + �Σ, with

Σa = σ2
objH(I + Sa)Ht + σ2

nI and �Σ = σ2
objHSaHt . (13)

In this way, ±�Sa plays the role of Si in SWF, and both are almost equal to zero since S1 ≈ S2. Consequently
the accuracy of the linear approximation is improved.
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Figure 6. (left) Segmentation of the SWF envelope image for the benign lesion in task 5. (right) Example images of
benign lesions from task 5.

The ideal-observer test statistic now becomes,

λ(g) ≈ σ2
obj

2
gtΣ−1

a H(S2 − S1)HtΣ−1
a g (14)

This formula assumes that we can invert the matrix Σa . However, Σa is a non-stationary and hence Fourier
methods do not apply. Instead, we apply the power series approach to calculate this inverse, using a station-
ary/nonstationary decomposition,Σa = σ2

objH(I + Sa)Ht + σ2
nI. This yields an iterative formula to compute

σ2
objH

tΣ−1
a g. We call it the Iterative Spatial Wiener filter (ISWF).

The iterative scheme is initialized by q0 = p0 = σ2
objH

tΣ−1
0 g . Then the process is given by

qi+1 = σ2
objH

tΣ−1
0 HSaqi and pi+1 = pi + qi+1. (15)

From (15), we see that ISWF adapts to include statistical properties of the RF data throughout the field. The
lesion is specified by the parameter Sa . So this process requires that we first calculate Sa before taking iterations.
From the definition of Sa , we can calculate it through S1 and S2, where S1 and S2 are estimated from RF data
using segmentation.

4.2 Segmentation

We have proposed a segmentation algorithm which makes use of a Markov random field (MRF) model.25,26 In
this model, image pixel values in one segmented region are assigned to a Gaussian distribution with specific
parameters (mean and variance) for each class. Then iterations are taken until the segmentation becomes stable.
The parameters are updated after each iteration. The core of this method is the adaptive clustering algorithm
of Papas,27 which has been applied for B-mode images by Ashton et al.28 In their research, they decompose the
B-mode image into multiple layers (Wavelet Decomposition), so that the Gaussian distribution can be applied for
the lowest resolution images. Segmentation is applied for each layer from the lowest to the highest resolutions.
This process is computationally intensive. In our application, we also have the RF data and the system impulse
response function. Using these, we can implement the SWF and obtain the SWF envelope image. The edges of
the lesion on the SWF envelope are more delineated than on the standard B-mode images, and the distribution
of pixel’s values can be assumed Gaussian with an error is acceptable for our purpose. Therefore, we can modify
the algorithm to perform segmentation on the envelope of SWF data. By doing so, we don’t need to decompose
the images into multi-resolution levels, thus reducing computation time. Fig. 6 (left) shows an example of the
estimated shape of the variance profile obtained from segmentation of the SWF B-mode image.

We also realize that the SWF plays a role as an inverse filter, restoring the original image blurred by the psf
of the system, so the SWF data may be considered as a coarse estimate of the scattering object. Combining
with (2), we can estimate σ2

obj from the mean square pixel value of the background region. The value for Si

inside the lesion may be estimated by measuring the mean-square image value inside the lesion and dividing
it by the estimated σ̂2

obj. However, we modify the process slightly by just dividing the squared magnitude of
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Figure 7. Approximate efficiencies of the envelope observer for the five tasks defined in Fig 2. Results obtained using the
psf generated by the Field II simulation program21,22 (left) and using Gabor pulses (sinusoid with a Gaussian-modulated
amplitude) as taken from the previous work1 (right).

each pixel inside the lesion by σ̂2
obj to take advantages of the inherent contrast amplification with each iteration.

Segmentation using the MRF model works well for most of the lesions in our five typical tasks. We only have
a problem in task 3, where malignant lesions have smooth boundaries. The two-level assumption for the MRF
model conflicts with the smooth boundary and creates unavoidable segmentation errors.

Applying the segmented variance profile to the iterative process, we calculated the ISWF B-mode images, as
shown in Fig. 6(c). To compare with the SWF B-mode image (b), the ISWF has adapted to the data despite
the segmentation errors. Furthermore, it amplifies the low contrast scattering signal inside the lesion that can
enhance the performance for task 5.

5. RESULTS

5.1 Predicted Observer Efficiency

The approximate efficiencies of the envelope observer (ratio of detectability index for the Smith-Wagner (SW)
observer to that of the ideal observer) are shown in Fig. 7 for the five visual tasks. The SW observer was developed
based on analysis of the B-mode data more than 25 years ago specifically for detection as in task 1.18,19 Since the
greatest loss of performance occurs during the conversion from RF to B-mode data, we found that the efficiency
of the envelope observer is reasonably predictive of trained human responses for these tasks.1 Fig. 7 summarizes
the efficiencies using standard B-mode images and those filtered using SWF and ISWF methods. On the left,
images were generated using the Field II program to simulate properties of the Siemens Antares system, and
on the right, images were generated using a Gabor pulse with similar images system properties. These data
are taken from the previous work1 with a correction to the equation for calculating the efficiency [1, Eq(17)] to
remove the square operation from the ratio of contrasts. Detectability indices are computed using the mean test
statistic value from 2000 independent pairs of image data. The ideal observer test statistic for data generated
with Fields II pulses was calculated using 50 terms in the covariance power series to reach convergence for all
tasks; only 10 terms were needed for the Gabor pulse.

Comparing the standard B-mode and SWF results from the left and right charts, we see there is a loss of
efficiency for the Field II pulse results compared with the Gabor pulse results, except for task 1 where efficiencies
are comparable as expected. Unlike Gabor pulses, Field II pulses have a fine structure of wave energy that
extends spatially a distance several times the main lobe dimension. This structure is not computation error;
rather it reflects the incomplete cancellation of edge waves known to emerge from transducer array elements. The
ISWF efficiencies are equivalent to the SWF results for tasks 1-4, however ISWF improved efficiencies relative
to the SWF from 33% to 50% for task 5. The lowest performance using ISWF images was obtained in task 3,
for which the segmentation algorithm generated the largest errors because of the soft lesion boundaries.

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

7265-9 V. 2 (p.9 of 12) / Color: No / Format: Letter / Date: 2/5/2009 9:48:28 AM

SPIE USE: ____ DB Check, ____ Prod Check, Notes:



Figure 8. Human observer performance as measured as proportion of correct responses from 2AFC trials. Results obtained
using the psf generated by the Field II simulation program21,22 (left) and using Gabor pulses as taken from the previous
work1 (right). Results on the left labeled SKE are from ISWF images in which the geometry of the lesion is known
exactly.

5.2 Measured human observer performance
Fig. 8 charts the performance of human observers as measured in 2AFC psychophysical studies for the same
class of data described in Fig. 2 and Fig. 7. The results are an average of responses from four trained observers
viewing 400 image pairs in each of the five tasks. A pilot study was conducted for determine how to adjust the
contrast so that the average performance viewing B-mode images was approximately 80%.

We cannot determine from these data whether human performance was affected when observers viewed images
formed using the more realistic Field II pulses compared with that of the Gabor pulses because contrasts were
adjusted independently to approximate 80% correct responses for each task. The fact that the proportions
correct for standard B-mode images in tasks 2-4 were below the targeted 80% value is noteworthy. In the pilot
studies, where contrast was set, we involved two very experienced observers. Including results from two less
experienced observers lowered the average, suggesting that further training may be required for the edgy tasks
2-4, which show lowest efficiency.

Human performance involving SWF and ISWF images was statistically equivalent in tasks 1-4. Only in task
5 was performance substantially improved from 63±2% to 82±4% correct. Further, we see that if the shape of
the lesion is known exactly when forming the iterative spatial Wiener filter (see the ISWF results labeled SKE
in Fig. 8, left), the visual task is simplified so much that the proportion correct is nearly 100%. This mainly tells
us that segmentation errors are limiting performance of the ISWF approach.

The price paid for use of ISWF is computation time. Standard B-mode images are generated at speeds far in
excess of video rates, depending on the field of view and ultimately the speed of sound in the body. The filtering
applied in SWF images requires significant computation time (many second on a PC), although the exact time
depends on the processor. It is conceivable that rates approaching 30 fps are possible for SWF images. However,
the iterations intrinsic to the filtering in ISWF images require significant more processing time (many minutes
on a PC), making it unlikely to achieve real-time frame rates. Fast processing of ideal observer strategies is a
topic of current interest. To determine if investment in such approaches is worthwhile, we would need to conduct
a clinical trial to evaluate the cost/benefit ratio.

6. SUMMARY AND CONCLUSIONS

The ideal observer formalism reveals optimal strategies for imaging specific features deemed critical for breast
imaging diagnosis. The challenge is to first interpret medical diagnostic problems in terms of likelihood functions
as required for the analysis, and then to devise fast techniques that implement the ideal strategy or its approxima-
tion. During our investigations, we find that the signal processing techniques emerge that were proposed over the
past few decades, especially beamforming methods like spatial filtering, deconvolution, and minimum-variance
techniques. The ideal observer formalism is a first-principles approach for designing beamformers (detector stage
of the ultrasonic system) that are ideal for specific clinical tasks.
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Spectral analysis of the five visual tasks associated with breast lesion classification and the spatial Wiener
filter provided further insights into the performance of SWF images relative to standard B-mode images. This
analysis suggested an iterative (ISFW) approach that we found significantly improved observer performance
for task 5, which requires observers to discriminate between lesions with two very low echogenicity levels. To
implement the ISWF method, we need to first segment the suspected lesion areas in order to design the adaptive
filter. Observer data viewing ISWF images suggest that the performance is primarily limited by segmentation
errors.

We conclude that approximations to the ideal observer strategy are capable of improving visual detection of
five individual features associated with breast cancer diagnosis as identified by an experience radiologist. We do
not yet know how performance is affected by combining these tasks. The utility of the approach depends on the
cost/benefit ratio that has yet to be determined
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