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Abstract—This paper defines the echo signal-to-noise ra-
tio (eSNR) for pulse-echo systems that adapts to the effects
of shift-varying impulse responses, spatiotemporal coding,
and various beamformers. Measurement techniques using
point targets or random scattering media can be interre-
lated for a broad range of experimental conditions through
the eSNR. The eSNR definitions are also illustrated by
comparing a spatial matched filter (SMF) beamformer to
conventional dynamic receive focusing methods to evaluate
performance based on resolution and sensitivity. Closed-
form expressions are presented that predict eSNR gains
from SMF approaches relative to other beamformers.

I. Introduction

In many ways, beamformers are the most important com-
ponent of ultrasound systems. The goal of beamformers

is to create uniformly narrow beams with low sidelobe am-
plitude over as long a depth as possible [1]. Evaluation of
beamforming strategies requires consideration of relative
image quality, cost, and speed. We and others found that
spatial filtering can focus acoustic beams with acceptable
image quality at low cost but with some loss of frame rate
[2]–[4]. For example, the echo signal-to-noise ratio (eSNR)
improves in the near field when spatial matched filters are
applied to fixed-point-focus echo data as compared with
traditional dynamic receive focusing (DRF) [5], [6]. How-
ever, the degree of improvement depends on how eSNR is
defined, and there are numerous definitions in the litera-
ture [7], [8]. An eSNR is a scalar quantity frequently used
to assess detection sensitivity. It is an important element
of system dynamic range that helps determine contrast
resolution for the imaging system. Despite its importance
and widespread use, there is no consistent definition that
applies across research applications.

This paper gives a general expression of the eSNR
for shift-variant B-mode imaging, describes an analyti-
cal method for computing eSNR enhancement from spa-
tial matched filtering and spatiotemporal matched filter-
ing beamformers, and verifies predictions using Field II
simulation [9] and phantom measurements. Several beam-
forming strategies are compared in terms of eSNR in Sec-
tion V, including fixed focusing, dynamic receive focusing
(DRF), spatial matched filtering (SMF) on beamformed
data, spatial match filtering of individual array elements
[4], and spatiotemporal filtering (STF) [6].
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II. Echo Signal Model

A linear equation describing time-varying, pulse-echo
RF signals g(t) in terms of the spatial distribution of an
object function1 f(x, t′) over the region of support Ω and
with the spatiotemporal impulse response h(x, t) is [10]–
[12]

g(t) = s(t) + e(t),

where s(t) =
∫

Ω
dxh(x, t) f(x, t′).

(1)

Here, s(t) is the signal and e(t) the signal-independent
noise; x = (x1, x2, x3) is the three-dimensional (3-D) po-
sition vector in the object relative to the transducer sur-
face, and t = (t1, t2) is the 2-D time vector for echo data
acquisition corresponding to one image frame; t1 = �T ,
0 ≤ � ≤ L − 1, describes the L range samples recorded
on the sampling interval T for one A-line in the RF frame,
and t2 = mLT , 0 ≤ m ≤ M−1, identifies the M sequential
A-lines recorded in a frame. The acquisition time is given
by t′ = t1 + t2 = (� + mL)T . Eq. (1) may be expressed as
a continuous-to-discrete transformation

g[�,m] = s[�,m] + e[�,m]

=
∫

Ω
dx h(x, [�,m]) f(x, t′) + e[�,m].

(2)

For stationary scatterers, f(x, t′) = f(x), (2) describes ob-
jects entirely in terms of their spatial position and reflec-
tivity. Signals are described entirely in terms of acquisition
time t′[�,m] and voltage amplitude. Nevertheless, � can be
related to depth along the beam axis x1 for sound speed c
via � = 2x1/cT , and m is related to lateral position x2 via
m = x2/∆x2, where ∆x2 is the lateral scan interval. Simu-
lation of echo signals requires that continuous object func-
tions be sampled, which yields the object vector f through
lexicographical reordering. Consequently, (2) can also be
expressed in compact matrix form, g = Hf + e.

The B-mode image displays an estimate of the object
function in the scan plane, f̂ = f̂(x1, x2). Image data
are found by applying a nonlinear operator to the RF
echo frame, f̂ = Og, that includes envelope detection,
low-pass filtering, logarithmic amplitude compression, and
scan conversion [12]. The eSNR discussion below is limited
to the RF signal, g. Discussions of B-mode speckle statis-
tics may be found elsewhere, e.g., [13].

1The term f(x, t′) is related to the acoustic impedance ξ through
the relation f(x, t′) = F−1

t {ξ(x)ω2/c2}, where F−1
t is the inverse

temporal Fourier transform operator, t′ is echo acquisition time, ω
is radial frequency, and c is sound speed.
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If f is stochastic and the object and noise functions are
each zero-mean multivariate normal (MVN), we have

f ∼ MVN
(
0, σ2

fI
)

and e ∼ MVN
(
0, σ2

eI
)
. (3)

The covariance matrices for independent samples are prod-
ucts of variance, σ2

f or σ2
e , and the identity matrix I.

III. eSNR Definitions

A common general definition of SNR [7] is the ratio of
signal energy to noise energy within the time interval of the
acquisition frame, T ′ = MLT . The eSNR for beamformed
RF ultrasonic data may be written as

eSNR =

E

⎧⎨
⎩

∑
�,m

[
E{g[�,m]}e|f

]2

⎫⎬
⎭

f

/
E

⎧⎨
⎩

∑
�,m

e2[�,m]

⎫⎬
⎭

e

, (4)

The notation E{g}e|f denotes ensemble average of the echo
frame g over the noise process e for a fixed realization
of the stochastic object f . In the following, we shift the
image plane axis to the center of the image, −L/2 ≤ � ≤
L/2 − 1, −M/2 ≤ m ≤ M/2 − 1.

A. Random Scattering Media

Applying (2)–(4) to random scattering media under the
ergodic assumption, and noting that E{g}e|f = Hf and
E{f(x)f(x′)}f = σ2

f δ(x−x′) (scattering intensity per vol-
ume), we find

eSNRr =∑
�,m

∫
Ω dx

∫
Ω dx′h(x, [�,m])h(x′, [�,m]) E{f(x)f(x′)}∑

�,m

E{e2[�,m]}

=
σ2

f

σ2
eLM

∑
�,m

∫
Ω

dxh2(x, [�,m])

=
σ2

f

σ2
e

⎛
⎝ 1

LM

∑
�,m

Eh

⎞
⎠ =

σ2
f 〈Eh〉
σ2

e

. (5)

The denominator in the first form of (5) was reduced to
σ2

eLM . The spatial integral in the second form is inter-
preted as the energy from the pulse, Eh, available to each
measurement sample, g[�,m]. The final form shows us the
ratio of echo signal energy to noise energy, where the re-
flectivity of scatterers is described by σ2

f and the time-
averaged energy of the pulse is 〈Eh〉.

Ignoring the physical order of the signal formation pro-
cess, we can invert the order of the sum and integral in (5)
to find

eSNRr =
σ2

f

σ2
e

∫
Ω

dx

⎛
⎝ 1

LM

∑
�,m

h2(x, [�,m])

⎞
⎠

=
σ2

f

σ2
e

∫
Ω

dxφh(x,0).

(6)

The term φh(x,0) is the deterministic autocorrelation
function of h over time at zero lag. It may be interpreted
as an average sensitivity in the scan plane to scatterers po-
sitioned at different points in region Ω. In (5) and (6), the
eSNRr is unitless, scalar valued, and proportional to the
ratio of object and noise variances. If h does not vary with
position, then (6) gives

∫
Ω dxφh(x,0) = φh(0)

∫
Ω dx =

φ′
h(0), which we know from (5) is just the average pulse

energy 〈Eh〉 but written as the product of temporal corre-
lation and volume. The shift-invariant result is

eSNRr =
σ2

f

σ2
e

φ′
h(0). (7)

B. Single Point Scatterer

It can be more convenient to measure signals from a
“point target” than from a random scattering medium,
provided the results can be related. Assume a single point
scatterer of reflective amplitude A is located at x for all
t′ so that f(x, t′) = Aδ(x′ − x). From (4), the eSNR for a
point scatterer is

eSNRp(x) =
A2

σ2
e

φh(x,0), (8)

showing that, of course, the echo signal-to-noise ratio for a
point target can vary with scatterer position. Combining
(5) and (8) gives the comparative relationship

eSNRr =
σ2

f

A2

∫
Ω

dx eSNRp(x), (9)

which, for shift-invariant systems, yields

eSNR′
p = eSNRp

∫
Ω

dx and eSNRr =
σ2

f

A2 eSNR′
p.
(10)

Eqs. (9) and (10) show that the eSNR from a random
medium is proportional to the ratio of random scatterer
strength per volume of medium σ2

f and the scattering in-
tensity of the point reflector A2. It is also proportional to
the eSNR for point reflectors integrated over the scattering
volume Ω. Note that factors describing ultrasonic attenu-
ation and time-gain compensation may be combined with
h(x, t′) and thus included as components of a shift-varying
system response.

IV. Beamforming with Spatiotemporal Filters

“Spatial filtering” is a term often applied to processing
of RF echo data g to facilitate beamforming in the process
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Fig. 1. Illustration of the eSNR(i)
p(m) over the received echo plane

[�, m].

of forming image f̂ [14]. It is thought of as spatial filtering
because the effects are observed in the image, but in fact
a 2-D temporal filter is applied to RF data. We reserve
the term “temporal filtering” to refer to compression of
coded pulses [15], and “spatiotemporal filtering” (STF) as
a combination of these two methods [6].

A. Spatial Filtering

Applying w[�,m] to echo data g[�,m], we obtain the
filtered echo signal

gw[�,m] =
∑
�,m

w[� − �′, m − m′]g[�′,m′]. (11)

The spatial matched filter (SMF), w[�,m] = h(x, [−�,−m]),
is one example of a beamforming filter able to focus more of
the pulse energy than dynamic receive focusing, and has
been shown to provide a greater eSNRp [4]. For a point
target and matched-filter processing, (4) and (11) yield

eSNRp(m)(x) =
A2

σ2
e

∑
�,m

φ2
h(x, [�,m])

φh(x, [0, 0])

=
∑
�,m

[
A2

σ2
e

φ2
h(x, [�,m])

φh(x, [0, 0])

]

=
∑
�,m

eSNR(i)
p(m)(x, [�,m]).

(12)

The eSNRp(m)(x) is the echo signal-to-noise ratio from a
point reflector using an SMF beamformer. It is an integra-
tion of instantaneous values, eSNR(i)

p(m), that are illustrated
in Fig. 1 for a 10-MHz linear array transducer with 80%
bandwidth and focused at x = (x1, 0, 0) = 40 mm. These
results were simulated using Field II. The maximum value
for the eSNR(i)

p(m) is located at � = 0, m = 0 and is equal
to eSNRp(x) from (8).

Interestingly, the eSNR(i)
p(m) is monotonic with the “spa-

tial resolution cell” concept widely used (see Eq. (31) in
[16]). Eq. (12) and Fig. 1 show that the eSNR(i)

p(m) de-
scribes the sensitivity of the system to different points
in the medium, which is a spatial resolution metric. The
eSNR and spatial resolution can be closely related. Meth-
ods that improve the eSNR by widening the distribution
of the eSNR(i)

p(m), e.g., by increasing the pulse length when
the time-bandwidth product (TBP) is one, do so at the
expense of spatial resolution. However, methods that scale
the amplitude of the eSNR(i)

p(m) without widening the dis-
tribution, e.g., varying f-number or output power, influ-
ence the eSNR independent of spatial resolution. The sum-
mation over temporal samples in (12) provides a scalar
measure at point-scatterer position x but also discards
spatial resolution information.

The gain from SMF beamforming relative to fixed-focus
methods is found from the ratio

γp(m)(x) =
eSNRp(m)(x)
eSNRp(x)

=

∑
�,m

φ2
h(x, [�,m])

φ2
h(x, [0, 0])

= 1 +

∑
�,m�=0

φ2
h(x, [�,m])

φ2
h(x, [0, 0])

.

(13)

Since φ2
h(x, [�,m]) is positive semidefinite, γp(m) ≥

1; i.e., matched filtering improves the eSNR. Equal-
ity is approached as the pulse bandwidth (in the 2-D
sense described below) increases and φ2

h(x, [�,m]) −→
φ2

h(x, [0, 0])δ[�,m].
For random scattering media and matched-filter pro-

cessing, (9) yields

eSNRr(m) =
σ2

f

A2

∫
Ω

dx eSNRp(m)(x), (14)

and the corresponding eSNR gain for region Ω is

γr(m)Ω =

∫
Ω dx eSNRp(m)(x)∫

Ω dx eSNRp(x)
≥ min γp(m)(x).

(15)

Eq. (15) shows that the eSNR gain for random media is at
least as large as that estimated from a point target. The
exact value depends on details of the beam properties and
may be found numerically.

The above analysis gives the eSNR gain for an SMF ap-
plied to beamformed RF signals; that is, echo signals that
are filtered after receive-channel summation. Alternatively,
an SMF can be applied to signals from individual receive
channels before summation. The latter approach generates
relatively lower sidelobe amplitudes and higher lateral res-
olution [4], although computational loads increase signifi-
cantly. The echo signal of a point scatterer located at x0
received on the i-th channel of an N -element array is

gi[�,m] = si[�,m]x0 + ei[�,m], i = 1, 2, . . . , N,
(16)
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where si[�,m]x0 = Ahi(x, [�,m]) and the noise per chan-
nel is ei ∼ MVN(0, (σ2

e/N)I). Assuming we have a fixed
transmit/receive focal length, the beamformed RF echo
signal is the summation without time delay,

s[�,m]x0 =
N∑

i=1

Ahi(x, [�,m]).

Spatial matched filtering the beamformed echo signal
yields

E{gw[�,m]}e = A2φh(x, [�,m])

= A2
∑

i

φhi(x, [�,m]) + A2
∑
i�=j

φhij (x, [�,m])

� A2[Q1(x, [�,m]) + Q2(x, [�,m])], (17)

and substituting (17) into (12) gives

eSNRp(m)(x) =
A2

σ2
e

∑
�,m

[Q1(x, [�,m]) + Q2(x, [�,m])]2

Q1(x, [0, 0]) + Q2(x, [0, 0])
.

(18)

Conversely, if the receive-channel echoes are filtered
individually before summation (ESMF), the signal is
given by

E{gw[�,m]}e = A2
N∑

i=1

φhi(x, [�,m]). (19)

The eSNR for the ESMF beamformer is

eSNRep(m)(x) =
A2N

σ2
e

∑
�,m

Q2
1(x, [�,m])

Q1(x, [0, 0])
. (20)

Eqs. (19) and (20) show that filtering echoes before sum-
mation eliminates the cross terms Q2 found in (17) and
(18) that generate acoustic sidelobes. Consequently, an
ESMF has better contrast resolution than an SMF. The
eSNR gain comparisons for the two methods are provided
in Section V.

B. Temporal and Spatiotemporal Filtering

Coded voltage waveforms c[�] have a high time-
bandwidth product (TBP > 1) and desirable properties
regarding orthogonality [17]. The echo signal from a coded
transmission is found from (2) by convolution with the
discrete-time code c,

g′[�,m] =
∫

Ω
dx

( ∑
�

c[� − �′]h(x, [�′,m])
)

f(x) + e[�,m].
(21)

Echo signals can be decoded to recover axial resolu-
tion (pulse compression) in different ways. For example,
matched filtering g′ with c[−�] yields

gt[�,m] =
∑
�′

c[� + �′]g′[�′,m]

=
∑
�′

φc[� − �′]
∫

Ω
dx h(x, [�′,m]) f(x)

+
∑
�′

c[� + �′]e[�′,m]

� K s[�,m] + ec[�,m].

(22)

The last form of (22) assumes ideal conditions where the
pulse is completely compressed such that s is recovered,
i.e., φc[�] � Kδ[�], so the echo signal amplitude is increased
by the factor K equal to the TBP of the coded waveform
[15]. The term ec[�,m] is filtered noise.

It is easy to show [15] that the eSNR gain
from temporal filtering of coded pulses is γp(t)(x) =
eSNRp(t)(x)/eSNRp(x) = K. From (15), the combined
gain from spatiotemporal filtering (STF) is

γr(m,t)Ω = γr(t)Ω × γr(m)Ω = K

∫
Ω dx eSNRp(m)(x)∫

Ω dx eSNRp(x)
.
(23)

V. Results

The derivations and predictions above are validated us-
ing Field II simulations and measurements on a Siemens
Antares system (Siemens Medical Systems, Issaquah, WA)
with a linear array transducer. The center frequency of
the transmitted pulse is 10 MHz and the −6 dB fractional
bandwidth 55%. The array element pitch is 0.10 mm. In
all situations, the transmit focus is 40 mm; the receive and
elevational foci are set at 40 mm except were stated oth-
erwise. The number of transmit-receive channels is fixed
at 96 (no aperture growth). The frequency-dependent at-
tenuation is 0.5 dB/cm/MHz and the speed of sound is
1540 m/s.

Shift-varying point spread functions were generated by
moving a point reflector from 15 mm to 64 mm along the
depth and ±6 mm laterally [Fig. 2(a)]. The eSNRp(x) was
estimated from a point target at each point on the grid
using (8) and is expressed in decibels. We also generated
echo signals from random scattering media [Fig. 2(b)] in
a 5 mm × 5 mm region centered at 20-, 40-, and 60-mm
depths to represent the near field, focal zone, and far field,
respectively, of the fixed 40-mm focal length.

A. The eSNRp(x) and the eSNRr

Eq. (9) allows us to predict the eSNR of a random scat-
tering medium from that of a point reflector, and (6) en-
ables us to compute the eSNRr directly from the echo data
g. Both are compared below. The random object function f
was generated numerically in two-dimensional using Monte
Carlo methods [18] and “scanned” via (2) before adding
noise. An example of a 5 mm × 5 mm region is given in
Fig. 2(b).

The point spread function (psf) shape changes with
depth and also laterally near the edge of the transducer.
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Fig. 2. (a) Shift-varying point-spread functions are estimated on a
grid; (b) random scatterers (top) are imaged to generate the simu-
lated echo field (bottom).

The width of the transducer is 19.2 mm, covering the re-
gion laterally from −9.6 mm to 9.6 mm. The psfs are later-
ally shift invariant in the selected region (−6 mm to 6 mm).
For the parameters used in this study, the eSNRp(x) was
found to be a smoothly varying function of position. We
found the correlation coefficient between two psfs placed
1 mm apart in depth is > 0.97. Consequently, we felt con-
fident interpolating these psf results to a finer mesh grid.
Results were upsampled using a bilinear interpolation fac-
tor of 200 to refine the grid to 0.01 mm × 0.01 mm. The
eSNRp value of the nearest point on the grid was assigned
to each scatterer in the region.

The eSNRr was computed from the eSNRp to find the
values 55.29, 42.23, and 11.08 dB from regions centered
at depths 20, 40, and 60 mm, respectively. Values of the
eSNRr estimated directly from the simulated echo data
were 55.30, 42.21, and 10.96 dB, respectively. The equal-
ity of results verifies the linear relationship between the
eSNRp and the eSNRr from (9). The data also suggest
that point target estimates can be used to accurately pre-
dict the eSNR from random media provided the scattering
amplitudes are known.

For shift-invariant situations, (10) gives eSNRr/eSNRp =
(σ2

f

∫
Ω dx)/A2, suggesting that the ratio should increase

with the volume of the medium. The volume is projected to
an area in a 2-D image. This prediction was tested exper-
imentally using a spatially uniform graphite-gelatin phan-
tom scanned with a Siemens Antares system. The volume
depth was limited to 1 mm so that the mean scattering
amplitude remained wide-sense stationary throughout the
field. Fig. 3 shows that the ratio eSNRr/eSNRp increases
in proportion during scanning while the scattering volume
is being widened.

B. The eSNR Gain for SMF and DRF Beamformers

A Field II simulation study was conducted to verify the
predictions of eSNR gain for spatial matched filtering. The
gain, (13), depends on the shape of the autocorrelation

Fig. 3. The ratio eSNRr/eSNRp was measured experimentally as a
function of the image area.

function φh, and the shape is determined by the system
bandwidth. Bandwidth can be quantified using the modu-
lation transfer function (MTF) in two dimensions, given by
the normalized discrete-time Fourier transform of h [16],

MTF(u) =

∑
�,m

h(x, [�,m]) exp(−i2π(�u1/L + mu2/M))∑
�,m

h(x, [�,m])
.

From the discussion in Section II, frequencies u = (u1, u2)
can be temporal or spatial as required. The −20 dB effec-
tive bandwidth of the system is defined from the area of
MTF(u) in the frequency plane (u1, u2) for which MTF >
0.1. Fig. 4(d) shows 2-D MTF(u) = 0.1 contours for psfs
originating at depths of 25, 40, and 64 mm, respectively.

Fig. 4(a) compares eSNRp values before and after spa-
tial matched filtering. Fig. 4(b) shows that predicted gain
values, γp(m), are comparable to measured values, and
Fig. 4(c) shows the corresponding effective bandwidths at
each depth. Two observations are immediately apparent
from Figs. 4(a) and (b). Measurements are accurately pre-
dicted by (13), and the eSNR is enhanced more than 9 dB
for the entire range following the SMF. The eSNR gain
realized by matched filtering with h is derived from selec-
tively suppressing noise in proportion to the system re-
sponse. As predicted by (13), Figs. 4(b) and (c) show that
the eSNR gain is lowest where the bandwidth is greatest.

We also predicted and measured eSNRp gains using a
wire target in a water tank and the Antares system. The
objective was to compare conventional DRF with the SMF
beamformer. We predicted eSNRp values of 41.2, 43.5, and
41.1 dB for the SMF and 30.9, 31.0, and 30.2 dB for DRF,
corresponding to the depths of 20, 40, and 45 mm, respec-
tively. Thus, the predicted eSNR gains are 10.3, 12.5, and
10.9 dB. The measured values are, respectively, 9.2, 9.6,
and 10.1 dB.

A previous study showed the eSNR could be further
improved in the near field using the SMF if filtering is
applied to echoes from each channel individually before
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Fig. 4. (a) eSNR versus depth before (eSNRp) and after (eSNRp(m)) application of the spatial matched filter (SMF); (b) predicted and
measured eSNR gains; (c) −20 dB effective bandwidth versus depth as computed from 2-D MTF curves; (d) 2-D contours at MTF(u) = 0.1
at depths of 25, 40, and 64 mm, respectively. The vertical and horizontal contour dimensions summarize the −20 dB axial and lateral
bandwidths.

Fig. 5. The eSNR versus the number of elements before and after application of the spatial matched filter (SMF and ESMF) in the near
field (a) and at focus (b).

summation (ESMF) [4]. Fig. 5 displays computed values
of the eSNR for fixed focus, SMF, and ESMF beamform-
ers as a function of receive channel number. Results at
depths of 20 mm and 40 mm are given. The number of
transmit channels is fixed at 32 for all beamforming meth-
ods. Three observations are apparent from Fig. 5. First,
all beamformers increase the eSNR as the receive aperture
increases. This makes sense since more of the scattered en-
ergy is detected. Second, in the near field [Fig. 5(a)], the
relative gain in eSNR is greatest where the receive aper-
ture, and therefore the 2-D signal bandwidth, are both
relatively small. As the receive aperture and bandwidth
grow, the eSNR increases but the gain in eSNR for filter-
ing is reduced. Third, the ESMF beamformer increases the

eSNR more than the SMF in the near field [Fig. 5(a)], but
there is no difference in eSNR between these methods at
the focus [Fig. 5(b)]. In the focal region, all the elements
have similar spatiotemporal responses. Eqs. (18) and (20)
predicted equality when all the transducer elements have
the same hi. In the geometric near field, however, hi varies
significantly among the different receive channel elements.
The greater coherence among receive-channel echo data
filtered before summing leads to a higher eSNR.

C. eSNR Gain for STF Beamformer

Field II simulations were also conducted to compare
eSNRs using a DRF and an SMF combined with a STF,
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as described in Section IV-B. A conventional Gabor pulse
was transmitted for DRF and SMF results, while a 13-bit
Barker code was transmitted for STF results, all with a
carrier frequency of 10 MHz. Table I gives the results for
each method at depths of 20, 40, and 60 mm. Coded pulse
excitation increased the eSNR by about 11 dB.

VI. Discussion

Eq. (8) and Fig. 4 show that the eSNR varies signif-
icantly throughout the field for instruments with shift-
varying impulse responses. Unfocused near-field regions
of a fixed-focus aperture system contain greater eSNRs
compared to the focal region and far field as shown in
Fig. 4(a). There is also a greater effective bandwidth in
the near field, suggesting the information content in the
near field is greater than in the far field [5]. However, the
greatest gain from the SMF occurs in the far field, which
has the effect of equalizing the eSNR with depth. Narrow-
band pulses gain more eSNRs than broadband pulses using
an SMF. Transmitting a coded pulse appears to boost the
eSNR uniformly with depth. However, pulse compression
of beamformed signals produces geometric errors in the
near field more than in the far field, thus generating range
lobes [6]. Consequently contrast resolution can be affected.

The last form of (13) breaks down when comparing SMF
and DRF methods because φh in the numerator and de-
nominator may not be the same. However, results can still
be obtained numerically. Field II simulation results com-
paring the eSNRp for DRF and SMF beamformers and
the eSNR gain are shown in Fig. 6. There are some minor
differences, however; it seems that (13) can still be used
to predict eSNR gains for many practical situations with
good accuracy.

Eq. (23) gives the combined eSNR gain from an STF
as the product of temporal coded excitation enhancement
γr(t)Ω and SMF enhancement γr(m)Ω. If decoding is suc-
cessful, the eSNR is increased by K. If it is incomplete,
range sidelobes are generated that distort h(x, t)/φh. So
the expression in (23) is an approximation. It is assumed
that the pulse compression is complete.

We close by applying this eSNR analysis to another
approach involving the correlation coefficient between two
noisy signals, g1 and g2 [19]. The correlation coefficient ρ
for a random medium in terms of (3) is

ρ =

E
{∑

�,m

g1[�,m]g2[�,m]

}

E
{√∑

�,m

g2
1[�,m]

∑
�,m

g2
2[�,m]

}

=

σ2
f

∑
�,m

∫
Ω dxh2(x, [�,m])

σ2
f

∑
�,m

∫
Ω dxh2(x, [�,m]) + σ2

eLM

=
eSNRr

eSNRr + 1
,

(24)

TABLE I
eSNR Gain in Decibels Versus Depth for DRF, SMF, and

STF Beamformers.

Depth (mm) DRF SMF STF

20 49.4 58.6 69.4
40 42.6 55.0 66.0
60 19.5 32.9 44.0

Fig. 6. (a) eSNRp comparisons for DRF and SMF beamformers ver-
sus depth; (b) corresponding eSNRp gain versus depth.

and therefore

eSNRr =
ρ

1 − ρ
. (25)

Eq. (6) expresses the eSNRr in terms of the system im-
pulse response, object characteristics, and noise. Eq. (25)
describes the eSNRr experimentally, based on statistical
correlations of the data. It builds intuition for the eSNR
in situations where decorrelation is a noise source [20], such
as speckle tracking, phase aberration correction, and elas-
tography. Together experimental results can be interpreted
in terms of system and object properties.

VII. Conclusions

In this paper, we propose an eSNR definition for pulse-
echo systems that adapt to the effects of shift-varying im-
pulse responses, spatiotemporal coding, and various beam-
formers. Measurement techniques using point targets or
random scattering media can be interrelated for a broad
range of experimental conditions. Tradeoffs between spa-
tial resolution and depth of field are contained in this eSNR
analysis. Closed-form expressions were found to predict the
measured eSNR gains using SMF and STF beamformers,
and the gains are significant—on the order of 10 dB for an
SMF in the near field.
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