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1. Introduction

The goal of cancer imaging is to exploit disease-specific object contrast mechanisms
that provide very specific information about cellular structure and function to help di-
agnose and manage diseases and to develop tools for scientific investigation. This chap-
ter reviews several ultrasonic methods for obtaining detailed histological descriptions of
mammary tissue noninvasively that are related directly to tumor growth.

Ultrasonic imaging (sonography) is now routinely applied in a clinical setting as an
adjunct to mammography and the physical examination. Its role is primarily to differ-
entiate solid tumors from cysts and to guide needle and surgical excision biopsies. Tu-
mors larger than 8 mm are readily detected as hypoechoic (lower echo strength) regions.
Unfortunately sonographic features are frequency nonspecific; the appearance of benign
masses, such as fibrocystic lesions and fibroademomas, is often similar to that of ma-
lignant lesions, such as infiltrating ductal carcinoma (IDC) and infiltrating lobular carci-
noma (ILC). Sonography is very useful for locating lesions and ruling out cysts, although
the definitive differential diagnosis requires pathological analysis of biopsy samples. A
needle biopsy is minimally invasive but suffers from sampling errors; small lesions can
be easily missed. Surgical biopsies remove more tissue, reducing sampling errors, but
introduce the risks and expenses associated with any surgical procedure. Surgical biopsy
is a hybrid diagnostic-therapeutic procedure, so we would like to use it only when we’re
reasonably confident that cancer is present. Our goal is to increase the diagnostic in-
formation provided by ultrasound scans safely and at low cost, so that frequent serial
imaging of patients at risk can be applied to reduce the number of questionable biopsies
without sacrificing diagnostic performance. Such methods can be used periodically for
the initial diagnosis and regularly for monitoring a patient’s response to treatment.
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Working against our proposed expanded use of ultrasound is the complexity and
diversity of breast cancer and natural inter-patient variability. Since histopathology is
how cancer is defined, it is completely accurate at one instant of time except for human
error. Radiological procedures are strong at detecting and localizing lesions but are rarely
used to classify disease since images only describe a small subset of the total histological
feature space. Thus it is unlikely that any one diagnostic test can reliably detect and
classify breast cancers in all patients.

Identifying diverse disease processes is improved by increasing the feature space for
classification. The best strategy is to provide decision makers with several independent
features related uniquely to tissue properties that span the range of disease phenotypes. A
simple example is the current combination of mammography and palpation. Mammog-
raphy is most accurate for detecting early tumors that produce microcalcifications. Man-
ual palpation exposes tumors that become mechanically stiff. Insofar as the effects are
uncorrelated, their combination more effectively aids diagnosis than each applied indi-
vidually. Even recent molecular imaging methods that seek to reveal and treat suspicious
regions based on high angiogenic activity can fail when used alone [45]. Promising new
approaches strive to recognize tumors that express a broad range of angiogenic factors
and related molecular signals. Like other researchers, we have turned to the molecular
biology of cancer to find hallmark features for imaging.

From the literature of the past two decades, a richly detailed picture of the biology
of breast cancer is emerging [16,61,78]. It is clear that the initiation, rate of progression,
and occurrence of malignant transformation are determined by a combination of genetic
and epigenetic factors; the later encompassed by the term “cellular microenvironment”.
Many of these discoveries suggest new opportunities for combined cancer imaging and
treatment that promise increased sensitivity and specificity. One manifestation is the new
field of molecular imaging [4, 60, 79]. Most molecular imaging approaches include de-
velopment of blood-born particles, known as probes or beacons, with biologically active
surfaces. These particles target disease-specific molecular sites in the body and emit or
reflect energy that can be sensed by current imaging modalities [1,13,50]. The develop-
ment of targeted contrast agents is largely a chemical synthesis problem; one of being
able to functionalize particle surfaces so they remain stably active while circulating in
the blood stream seeking their targets.

Our approach is to image histological features of breast tissues that influence the
cellular microenvironment (defined below) without contrast enhancement through the
unique capabilities of ultrasound. Ultrasound is highly sensitive to subtle variations in
the mechanical properties of tissues at many scales that often change as the composition
and distribution of cells is modified by disease. To model sound tissue interactions, tis-
sues are viewed from the materials science viewpoint as a viscoelastic continuum (think
of gelatin) in which compressional sound waves travel. Within glandular tissues, cells,
connective tissues and the microvasculature reflect a small amount of the sound energy
back to the detector. Because the wavelength of diagnostic ultrasound (150µm) is about
300 times longer than the wavelength of visible light (500 nm), the spatial resolution
possible for ultrasound is far below optical microscopy. Nevertheless, lower attenuation
allows ultrasound to penetrate deeper into the body than light and therefore it is unnec-
essary to extract tissue samples for analysis. Rather than resolving individual structures,
a statistical ultrasonic analysis examines the statistical properties of echo signals to es-
timate average properties of tissue structures at the scale of the cell. For example, we
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can create parametric ultrasound images where the image pixels represent the average
size of scatterers. Using pre-image echo signals from clinical instruments and advanced
signal processing methods, parametric ultrasound images quantify structural features of
fibrotic tissues and regions of cellular hypertrophy and hyperplasia with the spatial res-
olution of sonography. In this application, ultrasound is applied to describemicroscopic
mechanical propertiesof tissues.

We can also use ultrasound to track tissue motion and thereby observe themacro-
scopic mechanical propertiesof tissues using the techniques of elasticity imaging. As we
show below, cancer modifies how cells are connected to one another over a long distance,
a feature of the disease that is often missed by histopathology. Ultrasound can detect
the spatial distribution of tiny local movements caused when tissues are gently squeezed
to estimate viscoelastic properties with the spatial resolution of sonography. Elasticity
imaging can describe desmoplasia, edema, and other processes that stiffen tissue. It also
describes ultrastructural changes to the intra- and inter-lobular stroma that alter how wa-
ter is attracted to the extracellular matrix and how collagen fibers are cross linked. Com-
bining the microscopic and macroscopic ultrasonic features, we gain new perspectives
on cancer progression and can track the course of disease safely and with low cost.

To be successful at this research requires a truly interdisciplinary effort, where the
rapid advances in cancer biology are integrated with a precise understanding of how ul-
trasound interacts with tissues to view these processes. Consequently, our chapter begins
with a review of modern theories of breast cancer formation and the interactions between
ultrasonic energy and biological tissues.

2. Breast Cancer Biology

Molecular signaling between epithelial cells and its supporting stroma is essential for
normal breast development and cyclic maintenance as well as tumorigenesis [16]. The
most common cancers are carcinomas of the mammary duct and lobule (Fig 1) often be-
ginning with mutations to the luminal epithelial cells. Growth promoting proteins stim-
ulate the oncogenic mutations to proliferate not into homogeneous masses of epithe-
lial cells but into heterogeneous, mixed-cell-type tumors containing epithelial, fibroblast,
smooth muscle, and inflammatory cells (Fig 2). Genetic alterations to epithelial cells
alone cannot explain the diversity of tumor cell phenotypes nor the complexity of disease
progression. There is now ample evidence to support the theory that epigenetic processes
driven by microenvironmental factors play major roles in the development of breast can-
cers [26,61].

The regional environment changes as cell types mix when the basement membrane
(BM) separating epithelial cells from stroma degrades. The BM is a layer of extracellu-
lar collagen to which signaling molecules are attached. These molecules both direct and
stabilize cell differentiation, polarization and overall 3-D organization [72]. The BM also
serves as a barrier and conduit for various signaling molecules produced by the epithe-
lium and stroma. The organization of cells in normal tissues is a balance between the ten-
dency of the epithelium to stabilize morphometry by producing BM and the stroma that
induces structural changes by selectively eroding the BM [61]. Stroma include fibrob-
lasts, smooth muscle cells, nerve cells, and the extracellular matrix (ECM). In addition to
the BM, mammary gland ECM includes the extracellular collagen-fiber network embed-
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Figure 1. The gross and micro-anatomy of breast tissue. The breast is scanned ultrasonically (a) to generate
a sonogram (b). Normal mammary lobule (c) composed of acini A in loose connective tissue stroma LC.
Surrounding the lobules and ducts is the dense connective tissue DC of the interlobular space. Magnification
of the acinus wall (d) shows basement membrane B separating LC stroma containing fibroblasts F and blood
vessels V from the parenchymal tissues including a thin layer of myoepithelial cells ME and the luminal
epithelium LE.

ded in “ground substance” that provides mechanical support. The ground substance is
mostly long proteoglycan molecules that are hydrated glycoproteins covalently bonded
to polysaccharide chains called glycosaminoglycans [38]. Also included are adhesive
glycoproteins: two important examples arefibronectinthat links cells to the ECM and in-
tegrins to facilitate cell movement within the ECM, andlaminin that connects parenchy-
mal cells to the ECM via the BM [11, 38, 70]. The stroma guides cell movement, orga-
nization and stability. Although wide-spread breakdown of BM is a histological indica-
tor for malignant conversion, the loss of BM regulation of epithelial-stromal interactions
also initiates neoplastic transformations [26]. Direct physical contact between glandular
epithelial cells and the surrounding connective tissues promotes neovascularization, in-
flammation, and a major structural remodeling of the ECM (Fig 2). Ultrasonic methods
enable us to observe the effects of this remodeling process, noninvasively, even if we
cannot resolve cells directly.

Stromal remodeling follows the formation of myofibroblasts from normal stromal
fibroblasts [63] or, as some suggest, from luminal-epithelial and myoepithelial cell con-
versions to myofibroblasts [58]. Myofibroblasts promote cancerous epithelial prolifer-
ation and generate large amounts of ECM collagen, smooth muscle actin and myosin,
and growth factors that transform the quiescent connective tissues into reactive desmo-
plasia [16, 76] (Fig 2). Smooth muscle cells in the fibrous form of desmoplasia that sur-
rounds many tumors will contract and stiffen lesions between one and two orders of
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Figure 2. Illustration of the progression of lobular (a,b) and ductal (c,d) carcinomas from in situ disease (a,c)
to invasive disease (b,d). Epithelial cell color indicates variations in pH and pO2 levels. Myofibroblasts MF,
lobular carcinoma in situ LCIS, ductal carcinoma in situ DCIS.

magnitude more than the surrounding tissue [33]. Thus many cancers can be palpated.
Despite an increase in collagen that scatters ultrasound, tissues also become edematous
from the collapse of lymph vessels. The combination (not fully understood) usually gives
breast tumors the hypoechoic sonographic appearance shown in Fig 1(b).

Ligands and receptors, growth factors, proteases and their inhibitors all orchestrate
complex signaling patterns between the epithelium and stroma to prepare the surrounding
connective tissues for neovascularization as required for continuous tumor growth [6].
This process dynamically erodes and builds ECM in spatial patterns that direct the growth
and stabilization of nascent vasculature. Knowledge of the mechanisms of tumor angio-
genesis is maturing [32].

The rate of all this activity is regulated by the quickly evolving cellular microenvi-
ronment, which includes functional cell phenotype and spatial organization, cell adhe-
sion sites, growth factors and metabolic activity. Tumors are heterogeneous mixtures of
reactive cells. They becomes a dynamic and interactive functional unit capable of regulat-
ing tissue specific gene expression in the mammary gland [25]. The progression of breast
cancer from in situ hyperplasia to metastatic disease involves interplay among cellular
genetics and microenvironmental factors; the former can be monitored using molecular
imaging and the later using the ultrasonic methods described below.
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Figure 3. Illustration of ultrasonic echo generation and image formation. A broadband pulse transmitted by
the transducer array is scattered as it propagates into the body along the beam axis. Immediately after trans-
mitting, the array begins “listening” for backscattered echoes. Echo signals from individual array elements
are combined to form the beamformed RF signal (a) used in our analyses. However sonograms are collec-
tions of adjacent RF signals that have been envelope detected (b), and whose amplitudes are logarithmically
compressed and assigned gray-scale values before being placed (scan converted) in the image (c).

3. Opportunities for Ultrasonic Imaging

To describe how ultrasonic methods can help classify breast lesions we briefly summa-
rize the physics of sound-tissue interactions [80]. Pulse-echo ultrasound relies on reflec-
tions (scattering) from tissue structures to produce the signal that appears in sonograms
(Fig 3). Ultrasound waves are scattered at the surfaces of structures that vary in density
and bulk compressibility [28]. The echo signal is most descriptive of the scatterer when
the wavelength of sound is approximately equal to the size of the scatterer [27]; shorter
wavelengths are absorbed more readily while longer wavelengths scatter less energy. In
soft tissues at diagnostic imaging frequencies (<20 MHz), the strongest scatterers are
composed of mesenchymal cells. Specifically in breast tissues, scatterers include arteri-
oles, mammary ducts and lobules – any connective tissue structure rich in collagen and
elastin fibers and muscle cells [18] of size approximately equal to the wavelength. At
higher frequencies, say 100 MHz, the wavelength of sound (15µm) can be just one to
three times the size of the cell nucleus, and therefore epithelial cell structures contribute
prominently to the echo signal [64]. The frequency of sound determines the scale of
structures that scatter sound energy and to what degree. Identifying sources of ultrasonic
scattering in biological media remains a topic of active investigation [29,43].

The wavelength also determines the limit of spatial resolution. Diffraction limited
resolution for ultrasound is proportional to the wavelength of sound. The average speed
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of a compressional sound wave in tissue is approximately 1540 m/s. At 10 MHz, the
wavelengthλ = 1.54 mmµs−1/10 MHz∼ 0.15 mm. For a Gaussian shape pulse and
a transducer bandwidth of 50%, the axial resolution is approximately twice the wave-
length, 0.3 mm. Similarly, a focusedf/# = 2.0 transducer aperture provides a lateral
resolution equal to the axial resolution,λ× f/# = 0.3 mm.

Above 100 MHz, many mammary cells are resolvable. However the sound-wave en-
ergy is attenuated more at higher frequencies, reducing the scattered energy by∼100
dB for every centimeter of tissue depth: 0.5 dB cm−1MHz−1× 100 MHz× 2 (to ac-
count for the two-way pulse-echo path.) The very high frequency range is the realm of
acoustic microscopy [5] that parallels many of the advantages and limitations of optical
microscopy.

When there is an average of 10 or more small scatterers per acoustic pulse volume
that are randomly positioned, the statistical properties of the echo signal reveal the sta-
tistical properties of the tissue [73]. This is the full-developed speckle condition also
responsible for the characteristic texture (speckle) of sonograms, e.g., see Fig 1(b). For
randomly positioned 30µm scatterers, a pulse length larger than 0.3 mm generates fully-
developed speckle and therefore the echo statistics are descriptive of the tissue structure.
Consequently, a 10 MHz broadband pulse with 50% fractional bandwidth can directly
image (resolve) structures 300µm and larger. However, by analyzing statistical moments
of the echo signal, we can describes average properties of random scatterers of size near
30 µm with the same 10 MHz pulse. The statistical analysis is less sensitive to scat-
terers much smaller than the wavelength, and requires more detailed information about
scatterer shape and material properties to accurately describe larger structures.

3.1. Scatterer size imaging

Modeling tissues as a viscous fluid containing randomly positioned scattering sites, we
adopt a statistical description of the cellular-scale structures [73]. Statistical moments of
the RF echo signal (Fig 3) and its power spectrum (described in Section 5) can be used
to estimates the average size and number density of scatterers contributing to the signal
if we are allowed to make a few assumptions about the medium and the acoustic field
geometry [8, 27, 36, 53]. Provided that the average properties of the scattering structure
varying slowly with position, size and number density can be accurately estimated with
a spatial resolution of 1-5 mm3, and thus we form parametric images of mammary tu-
mors [54]. Changing the transmission frequency band allows us to weight the contribu-
tions from mixed-size tissue structures, so that even structurally complex tumors (Fig 2)
may be analyzed. Section 5 below describes this as an “inverse problem” where under-
lying structure of tissue are estimated from the echo signals generated by ultrasound
interactions with the tissue.

Of course much of what we know about tissue histology is obtained from excised
samples that are prepared in a manner that distorts the structural geometry. So the exact
geometries of the remodeled tumor architecture is only partially known. Also the contri-
butions to the echo signal of each cellular component at each frequency is unknown be-
cause the acoustic impedance of these structures has not yet been measured. Developing
and evaluating the accuracy of a statistical description of tissue histology requires a sig-
nificant amount of interdisciplinary background work to (a) identify microscopic struc-
tures that interact with sound waves, (b) measure their micro-mechanical properties, and
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(c) model acoustic scattering and absorption for tumor geometries and practical acoustic
fields.

3.2. Elasticity imaging

Another approach is related to changes in the macroscopic elastic properties of breast
tissues during malignant transformation. As described above, tumors can stiffen from
desmoplasia and edema more than an order of magnitude [33], which is the reason man-
ual palpation (breast self exam) is recommended as the first line of defense for early
detection. Palpation has been used successfully to detect lesions for more than two mil-
lennia despite its relatively low sensitivity for deep masses and no depth resolution. The
phase sensitive nature of ultrasonic detectors allow us to measure very small tissue move-
ments, smaller than one hundredth of a wavelength [30], with millimeter-scale depth res-
olution [35]. Despite the fact that sonographic spatial resolution is limited by the wave-
length, the local echo phase allows us to reliably track micron-scale scatterer motion.

In elasticity imaging, the breast is scanned ultrasonically just before and after apply-
ing a small deformation force to the tissue [9]. In Fig 1(a), imagine scanning the tissue
and recording the RF signals, pressing the transducer into the breast a couple of millime-
ters and scanning again. Comparison of the RF signals in the pre- and post-compression
echo frames yields the local displacement from which strain images are computed. Strain
images are an indication of the spatial variations in tissue stiffness. Any phase-sensitive
imaging technique may be used: ultrasound, magnetic resonance imaging (MRI), or op-
tical, where the resolution, sensitivity to motion and depth of penetration depend on the
host modality. Many approaches to breast elasticity imaging have been proposed, and
each approach provides different relative advantages [14, 21, 31, 44, 49, 59, 65]. There
are also techniques for measuring the elasticity of individual cells, in vitro [34]. Our ap-
proach to elasticity imaging will be described in Section 6. We focus our attention on
time-varying strain imaging techniques that examine the viscoelastic properties sensitive
to the cellular microenvironment.

Scatterer size imaging and elasticity imaging provide complimentary but mostly in-
dependent information at different spatial scales despite the fact that both are estimated
from ultrasonic RF echo frames. Imagine there is a defect in a sheet of cloth that you
wish to detect. You may visually scan the cloth and look for a change in the light re-
flected to find the hole directly. Or you can pull on the edges of the cloth and watch how
the texture of the reflected light moves over the plane as you pull. The first approach
examines the microstructure where the second examines the macrostructure. Depending
on the amount of contrast for each approach, one or the other or both may allow you to
find the defect.

4. Governing Equations

Math-shy readers may want to read the words around the equations in the next section.
The section is intended to briefly outline how diverse sources of mechanical disturbances
in soft biological tissues can be expressed using a single mathematical expression. It
gives some common ground to the many approaches to elasticity imaging as well as
sonography.
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Movement of an elastic tissue, which includes everything from mechanical com-
pression to ultrasonic wave propagation, is governed by the following equation of mo-
tion [55]:

G∇2δ +
(
K + G

3

) ∇(∇ · δ) = ρ
∂2δ

∂t2
, (1)

whereδ is the displacement vector andK, G, ρ are fundamental material properties
of tissues. Ifx1 is the position of a tissue scatter at measurement timet1 andx2 is the
position att2, thenδ = x2 − x1. K is the bulk compressibility modulus that describes
how much the tissue changes volume when compressed by a known force;G is the shear
modulus that describes how easily tissues change shape when stressed; andρ is the mass
density [68]. We refer to Eq (1) as a wave equation since it describes how mechanical
disturbances – waves – propagate in space and time.

4.1. Ultrasound waves

Under conditions where there is no rotational motion, it can be shown that∇2δ =
∇(∇ · δ), and Eq (1) reduces to the equation for compressional waves:

∇2δ =
1
c2

∂2δ

∂t2
, (2)

wherec2 = (K + 4G/3)/ρ is the speed that compressional sound waves travel. Sound
speed varies between 600 m/s (lung) and 1620 m/s (lens of the eye) in soft tissues, with
the average being 1540 m/s [80].

Mechanical disturbances can be described as displacement waves, as in Eq (2), or
equivalently as pressure waves [28]. Thus an equation similar to (2) for plane pressure
waves can be found that describes how sound energy introduced at the skin surface by a
transducer flows through the body. All soft tissues are inhomogeneous in the sense that
they are filled with structures that scatter a small amount of the sound wave energy (see
Fig 3). These reflections are the sources of the sonographic signal. Adding the possibility
of scattering to the equation, the backscattered pressure wave expressed as a function of
positionx = (x, y, z) and temporal frequencyf is

pbs(x, f, t) =
k2P

4π

[
exp(−i(kx− 2πft)

x

] ∫

∞
dx′ γ(x′) exp(−ik′x′) . (3)

Eq (3) relates the structure of the medium to the backscattered pressure waves we can
measure. The integral on the right side is the complex spectrum (spatial Fourier trans-
form) of the scatterer distribution reflecting the sound. Scatterers are spatial variations in
densityρ and compressibilityK that can be combined to define the acoustic impedance
γ. The integral predicts how the size, shape, orientation and number of tissue reflectors
influence the normalized backscattered amplitude.k2P/4π is an amplitude scaling fac-
tor, and the quantity in brackets shows us that a scattered wave created in tissue travels
in time and space back to the receiver as a spherical wave. The backscattered pressure
depends on the wavelengthλ through the scattering wavenumberk′ = 2k = 4π/λ [28].
Also i =

√−1. Eq (3) is too simplistic for implementation, yet it guides our physical in-
tuition and defines what is possible from tissue measurements. Section 5 provides more
details about how to estimate tissue scatterer sizes from echo measurements.
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4.2. Static elastic deformation

Eq (1) also describes the displacement of breast tissue immediately after it is compressed
in a static elasticity imaging experiment. A fundamental difference between a compres-
sional ultrasound wave and a deformation applied during palpation is how fast the parti-
cles move during the disturbances. Particles move just 10 nm in response to a passing 10
MHz ultrasound wave with a mechanical index of 0.3 [80]. The speed of particle motion
(pressure divided by acoustic impedance) at 10 MHz is roughly 540 mm/s, about 500
times faster than tissues move during palpation. Particle speed and wave speed are not
the same! Particle velocity is slower than wave velocity but fast enough that the pres-
sure wave periodically modulates the local tissue density. Consequently, we use the bulk
compressibility modulusK to describe deformations from ultrasound waves. By com-
parison, displacements from manual palpation are too slow to affect the local density.
When tissues have time to equilibrate internal forces, they change shape and not density.
Consequently, the shear (shape) modulusG is the material property that describes the
deformation during palpation. It is important that these two phenomena are governed by
independent material properties, otherwise deformations would alter wave properties and
ultrasonic echo signals could not be used to accurately track motion.

When compressed, breast tissues spring back because they areelastic. However, if
recovery is delayed or incomplete, we say the tissue isviscoelastic, where the magnitude
of the viscous response is proportional to the rate of deformation. All biological tissues
exhibit viscoelastic behavior under common elasticity imaging conditions. Tissues are
also relativelyincompressiblesince the mass density changes very little during deforma-
tion. Mathematically, incompressibility implies∇ · δ = 0. Also, if the deformation is
small and slowly applied or held constant, then∂2δ/∂t2 ' 0. Therefore Eq (1) reduces
to Laplace’s equation∇2δ = 0, which predicts that the displacements vary linearly
with position in the body. For example, if the transducer in Fig 1a is displaced downward
a distanceδ0 into the surface of the breast, along thex axis, then we would predict that
the displacement along thex axis equals

δx(x) = ε̄xx + δ0 . (4)

Taking two derivatives, we see Eq (4) satisfies Laplace’s equation. The displacement is
negative (downward) and has its largest magnitude at the skin surface,δ0. It decrease
linearly with depth to zero at the chest wall at a rate given by the average longitudinal
strain, ε̄x = dδx/dx. Of course, details of the boundary conditions and the geometry
of mechanical inhomogeneities (like stiff tumors) perturb our simple linear equation.
Nevertheless Eq (4) is used as our initial guess when reconstructing strain images from
patients, as described below. Just like Eq (3), Eq (4) is too simplistic to describe real
experimental details, but serves nonetheless to provide us with intuition about general
tissue behavior and as an initial condition for image reconstruction.

There are several approaches to imaging viscoelastic behavior.Dynamic elasticity
imagingmethods introduce low frequency (<1 KHz) shear waves into tissues [44,49,59,
65]. Shear waves move much slower than compressional waves and therefore they can
be imaged ultrasonically or with other modalities. From the speed of the shear waves, the
shear modulus of tissues is estimated almost independent of boundary conditions [22].
The problem is that tissues behave like inviscid fluids that are highly attenuating to shear
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waves. We have developedstatic elasticity imaging methodsfor imaging viscoelastic
features from a time series of strain images recorded while tissues are compressed and
held [66]. The technique, its limitations, and relationship to tumor differentiation are
described in Section 6.

5. Scatterer Size Imaging

5.1. Biological motivation

Optical microscopy and photomicrographs of stained histological sections represent the
current gold standard for cancer diagnosis. Optical photomicrographs allow the visual-
ization of cellular and sub-cellular structures and larger scale growth patterns of a neo-
plasm. In this way a definitive diagnosis of a breast lesion can often be made.

In a vast majority of cases, differentiation of benign versus malignant tumors can be
made morphologically with a high degree of certainty. Four basic morphologic criteria
are used to classify (or predict) malignancy of a tumor: (1) differentiation and anaplasia,
(2) rate of tumor growth (3) degree of local invasion and (4) metastasis [12]. Of these
criteria, optical microscopy analysis of a primary tumor describes the first three. Like-
wise, it is hypothesized that ultrasound scatterer size imaging of a primary tumor can
also yield information related to the first three criteria.

The degree of cell differentiation is important for diagnosis. Well differentiated
tumor cells have the structure and function of the tissue of origination. Conversely,
anaplastic cells are undifferentiated. Typically, benign tumors are well-differentiated
while malignant tumors range from well-differentiated to undifferentiated. Often times
the only feature that distinguishes a benign tumor from its surroundings is the hyper-
plasia, or increase in cell number density. Determination of malignancy cannot always
be made on the basis of cellular morphology because malignant neoplasms can be well-
differentiated. However, anaplasia almost certainly means malignancy.

Morphological changes in cells related to anaplasia can be very diverse. Cells and
their nuclei display variations in both shape and size (pleomorphism). Cells can be very
large or very small and primitive in appearance. However, in malignant neoplasms the
nuclei tend to be disproportionately large. Another feature of malignant neoplasms is the
formation of giant cells that may contain one or more nuclei.

The second criteria for distinguishing malignant tumors from benign is the rate of
tumor growth. In general, benign tumors grow less rapidly than do malignant tumors.
The growth rate corresponds to the level of differentiation, and as a result malignant tu-
mors (especially tumors characterized by anaplasia) grow more rapidly than benign tu-
mors. Rapid growth of undifferentiated tumor cells is caused by an abundance of mitoses
present at any one time leading to rapid proliferation. While the rate of growth is a gen-
eral criteria for classifying tumors as malignant or benign, there exist benign tumors that
can grow rapidly and malignant tumors that grow slowly.

The third criteria for determining malignancy is the extent of local invasion by the
tumor. Nearly all benign tumors grow as solitary masses that remain localized to the site
of origin. Benign tumors are most often encapsulated and do not infiltrate into surround-
ing tissues or vasculature. On the other hand, malignant tumors typically are accompa-
nied by progressive invasion of the surrounding parenchyma. Exact demarcation of the
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tumor margins is difficult to determine. The invasiveness of the malignant tumor can lead
to metastases. The detection of metastases is the most reliable criteria for determining
malignancy.

Optical microscopy can yield diagnostic information about a tumor based on the
first criteria and, given a large enough sample, the third criteria. Conventional ultrasound
and X-ray mammography can yield diagnostic information about the rate of growth of
a tumor. We hypothesize that ultrasound spectral imaging techniques, i. e. scatterer size
imaging, can further yield information regarding the first and third criteria, noninvasively.

Scatterer size imaging facilitates breast cancer diagnosis by quantifying morphologi-
cal information at the cellular scale. The most common benign tumor in the female breast
is a fibroadenoma. Typically fibroadenomas grow as encapsulated spherical masses. They
are often freely moveable from the surrounding breast tissue. Histologically, a fibroade-
noma consists of cellular and fibroblastic stroma enclosing glandular and cystic spaces.
The glandular spaces (acini in Fig 1) are typically larger than 50µm. They are important
structures for differentiating tumors that can be quantified by ultrasound scatterer size
imaging techniques .

Ductal and lobular carcinomas constitute approximately 90% of all breast cancers
[2]. Malignant tumors, beginning as in situ disease (DCIS and LCIS), progress to invasive
cancers (IDC and ILC) as the basement membranes are breached (Fig 2). DCIS can
consist of sheets of carcinoma cells and necrotic areas with microcalcifications. Cells
related to DCIS appear to be monomorphic in nature unless surrounded by Paget cells
(pleomorphic with abundant cytoplasm). Quantification of microcalcifications is key to
making a diagnosis of DCIS and may be measurable by ultrasound scatterer size imaging.
In addition, the cancer cells may have a unique, identifiable backscattering signature
relative to normal cells.

As the carcinoma invades the surrounding tissue, other mechanisms take over that
change the histopathological presentation. IDC is characterized by dense, scirrhous stro-
mal tissue. Cells of IDC are highly pleomorphic (as opposed to simple DCIS) with small
cells containing regular nuclei to large cells with large irregular nuclei. Often IDC infil-
trates into and replaces surrounding adipose tissue. Quantification of large distributions
of cell sizes may be a key to ultrasound scatterer size classification of IDC.

LCIS is characterized by a large proliferation of monomorphic epithelial cells. These
cells hypertrophy with oval nuclei. Only rarely is LCIS associated with micocalcifica-
tions. The large cells may be quantifiable with scatterer size imaging yielding a unique
classification signature for ultrasound. As the lobular carcinoma invades the surrounding
tissue, the tumor undergoes morphological changes (Fig 2(b)). Progression of the tumor
to ILC produces characteristic small cells with little pleomorphism of the nuclei. Often,
ILC contains signet-ring cells. One hallmark of the ILC is the single file of cells (stacks
that are often one cell wide) loosely dispersed throughout the fibrous matrix.

Each of these features may yield important ultrasound scatterer size information
leading to diagnosis. The importance of understanding the underlying tissue morphology
is vital to predicting and interpreting the ultrasound scatterer size images of suspicious
breast lesions. In addition to suggesting possible scattering sources in a qualitative fash-
ion, optical photomicrographs of tumors have been used to predict ultrasound backscatter
signatures from tissue [43]. The motivation for using ultrasound scatterer size imaging
is directly related to biological underpinnings because each type of cancer has its own
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set of structural features. The next section summarizes the signal analysis for estimating
size and discusses some preliminary results in animal models.

5.2. Scatterer size estimation

The basic approach to scatterer size estimation is simple. Estimate an echo spectrum from
a small region of interest (ROI) in tissue, correct the spectrum for the instrumentation re-
sponse and propagational losses, and then compare the result to a set of modeled spectral
curves corresponding to different scatterer sizes. The modeled curve that best matches
the data determines the average size of scatterer in the medium. The main challenge is to
translate knowledge of tissue histology into accurate models of echo spectra.

RF echo signals (Fig 3) are known to contain information about the size, shape,
number and relative impedance of scattering objects within the tissues [8,27,36]. Time-
varying echo signalsg(t) are coherent summations of the weak pressure waves from
tissue that interact with the phase-sensitive receiving transducer surface. To estimate
g(t), we sum the pressure waves (pbs from Eq (3)) over the receiver aperture areaA and
over frequencyf after they are weighted by the acousto-electric response of the detector
H(f) [27]:

g(t) =
∫

∞
df H(f)

∫

A

dApbs(x, f, t) . (5)

Scatterer size is estimated by comparing the measured backscattered power spectrum of
the RF signalW (f) to modeled spectraWt(f) where the size is known. The measured
spectrum found from the squared magnitude of the short-time Fourier transform ofg(t)
[27]:

W (f) =
1
N

A(f, L)
Wref (f)

N∑
n=1

|G′n(f)|2 , (6)

whereG′n(f) is the Fourier transform of the time-gated RF signal of thenth scan line
in the ROI,Wref (f) is a reference spectrum,N is the number of gated scan lines in the
ROI,L is the length of the range gate, andA(f, L) is a frequency-dependent attenuation-
compensation function [51]. IncreasingN reduces spectral noise but only at the cost
of reduced spatial resolution for size estimates. The influence of the instrumentation
parameters are minimized by normalizingW by the reference spectrum,Wref . Modeled
spectra,Wt, are given by [27,36]

Wt(f) = C(ae, nz, q, L)f4F (f, ae) , (7)

whereC is a constant that depends on the effective scatterer radiusae, the average
concentration of scatterer sitesnz, beam geometry factorq, and range gate lengthL.
F (f, ae) is the form factor that defines how scatterer size2ae affects the frequency varia-
tions in the echo spectrum [27]. An important consideration for accurately estimatingae

is the appropriate choice of theF . Some investigators assume a Gaussian form forF that
has been used to model the scattering properties of several soft tissues [29, 37, 46, 47].
Gaussian form factors represent tissue structures as continuously varying distributions
of acoustic impedance fluctuations about the mean value. Numerical techniques for esti-
mating2ae in biological media are detailed in [53].
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Table 1. Estimates of average scatterer size2ae for three types of rodent tumors and corresponding healthy
tissues.

Tissue type Average Size (µm)

Normal 80.2± 11.2

Fibroadenoma 105.9± 13.7

Carcinoma 30.0± 8.9

Sarcoma 33.0± 8.0

Carcinoma Cell Pellet 28.0± 4.5

5.3. Measurements and results

Several studies were conducted at frequencies between 5 – 25 MHz to examine the ca-
pabilities and limitations of ultrasonic scatterer size imaging. Experiments on solid tu-
mors in rats and mice allowed us to investigate the utility of scatterer size imaging for
classifying mammary tumors and describing the underlying tissue microstructure.

Three solid tumor types were studied. First, spontaneous mammary fibroadenomas
in rats were examined [52]. We used a 10 MHz, single element transducer (70% band-
width, f/4) to estimate scatterer sizes summarized in Table 1. Initial experiments com-
pared estimates inside the fibroadenomas with surrounding normal tissues. A statistically
significant difference between average scatterer size estimates inside and outside was
observed (ANOVA, p<0.05). Average values showed 30% increases in size for fibroade-
nomas. Optical photomicrographs of tumors sections, e.g., Fig 4(a), show that glandular
acini have the same approximate size as the ultrasound estimates, and therefore were
identified as the dominant source of scattering for the fibroadenomas. These structures
are characterized by pockets of fluid surrounded by layers of epithelial cells (see Fig 1).
The average size of these acini was estimated to be around 100µm in diameter corre-
sponding to the ultrasonic estimates.

The second type of solid tumor was from a commercially available tumor cell line,
the 4T1 MMT carcinoma for mice (ATCC, Manassas, VA). Carcinoma cells were cul-
tured in medium and then injected subcutaneously into the fat pad of balb/c mice. Tu-
mors were grown to a little over a centimeter in size and then examined using ultra-
sound scatterer size imaging. These were scanned with a 20 MHz, f/3 transducer with
at 75% fractional bandwidth. Results are reported in Table 1. In Fig 4(b), the individual
cells themselves were identified as the most probable source of scattering in the tumors.
The cells had an average nuclear diameter of 13µm with the total cell size being 50
to 200% larger than the nucleus. In this animal model, tumors that are allowed to grow
large enough develop a necrotic core [10]. While no correlations between scatterer size
imaging and necrosis in the tumors have been made to date, the possibility exists that
areas of necrosis can be distinguished from regions with ample blood supply through
scatterer size imaging.

The third type of solid tumor was a commercially available tumor cell line, the
EHS sarcoma for mice (ATCC, Manassas, VA). Sarcoma cells were injected into mice
(C57BL/6) and tumors were allowed to grow to a little over a centimeter in size before
scanning. Results using the 20 MHz transducer are also shown in Table 1. Since the sar-
coma scatterer size estimates were similar in size to the carcinoma estimates, it was ex-
pected that a similar type of structure would be seen in the sarcoma. However, as Fig 4(c)
indicates, the structure of the sarcoma was vastly different from that of the carcinoma.
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Figure 4. Optical photomicrographs (H & E stained) of a) rat fibroadenoma, b) mouse mammary carcinoma
and c) mouse sarcoma. Reprinted with permission from Ref. [54], M.L. Oelze et al., IEEE Trans. Med. Imaging
23, 764 (2004) with permission from IEEE.

The sarcoma and carcinoma cells were the same size, however carcinoma cells were
more uniformly distributed than the sarcoma cells. The clumps of sarcoma cells were as
small as a single cell and sometimes larger than 70µm. They were surrounded by an
ECM consisting of laminin, collagen IV, entactin and heparin proteoglycans.

Spatial maps of scatterer size estimates – parametric images – for all three types
of tumors are displayed in Fig 5. The images are useful for describing how scattering
structures vary in size throughout the lesion. For example, not only are the sizes larger
for fibroadenomas but structures near the periphery are smaller than those near the center
of the tumor.

An important consequence of culturing and transplanting cells is that the cells can be
examined by themselves outside of the tumor. The 4T1 MMT carcinoma cell line is an
adherent cell line; therefore, cells were grown in flasks and then placed in solution (the
sarcoma cell line was not able to be used in this fashion because the cells were cultured
in vivo). The carcinoma cells were then spun on a centrifuge for 10 minutes at 900 RPMs
to form a cell pellet. The cell pellets conformed to the sides of a tube of 1 cm in diameter
and the pellets had thickness typically of several millimeters. The bottom of the tube was
covered with Saran Wrap (polyvinylidene chloride, SC Johnson & Sons, Racine, WI) as
a scanning window to allow ultrasound to pass through and keep cellular material from
escaping the tube. Comparison of ultrasonic size estimates on the pellet with those on
the in vivo tumor showed no significant differences (Table 1). The similarity between
size estimates from the tumor and from a simple pellet of cells that make up the tumor
indicated that cells were the dominant source of scattering.
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Figure 5. Average scatterer diameter images of rat fibroadenoma (left) mouse carcinoma (middle) and mouse
sarcoma (right) tumors. Reprinted with permission from Ref. [54], M.L. Oelze et al., IEEE Trans. Med. Imaging
23, 764 (2004) with permission from IEEE.

The obvious differences between the carcinomas and sarcomas from the photomicro-
graphs did not translate into significant differences in the scatterer sizes estimated using
the Gaussian form factor scatterer model. We suspected that the Gaussian model was not
representative of the smaller structures, and hence insufficient to separate the carcinoma
from the sarcoma. The similarity between estimates indicate that cells are a dominant
source of scattering in carcinoma and sarcoma. In order to see differences between the
two kinds of tumors ultrasonically, several possible directions were pursued. First, it was
conjectured that the larger clumping structures might be able to be picked up with much
lower frequency analysis. Second, it was hypothesized that the present models for tissue
scattering were not sensitive to the structural differences. More specific models would
lead to a deeper understanding of the fundamental interactions of ultrasound with tissue
and cellular structures. Lower frequency analysis did not yield significant differences be-
tween scatterer size estimates from carcinoma and the sarcoma tumors. Therefore, the
second approach was used in an attempt to differentiate the two kinds of tumors.

The spherical Gaussian model is based on several assumptions about soft tissue scat-
tering, i.e. the Born approximation, plane wave approximation, weakly focused sources,
and no multiple scattering. These assumptions allow for soft tissue scattering to be
described by a 3-D spatial autocorrelation function [29, 36]. If a distribution of the
impedance in a scattering volume can be mapped out or approximated, then the normal-
ized backscattered power spectrum can be calculated directly from this distribution [43].

Closer examination of the carcinoma tumors and cell pellets led to the initial hy-
pothesis that the cell nucleus was the most important factor in cell scattering [54]. For
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Table 2. Comparisons of scatterer size estimates for three different scattering models.

Gaussian Model Anderson Model New Cell Model

Tissue type 2ae (µm) χ2 2ae (µm) χ2 2ae (µm) χ2

Sarcoma 33.0± 8.0 11.13 25.1± 6.2 6.9 22.4± 23.8 9.7

Carcinoma 30.0± 8.9 7.26 27.7± 6.6 5.3 16.4± 20.9 35.5

Figure 6. (left) Confocal microscope image of mouse carcinoma cell and subsequent cell model with actin
filaments (red), microtubules (green) and nucleus (blue). (right) Acoustic model of spherical cell including
effects of cytoplasm, cytoskeleton and nucleus.I1 is the impedance at the edge of the nucleus,IB is the
impedance of the background,I0 is the impedance of the nucleus,RN andRC are the radii of the nucleus and
total cell, respectively.

carcinoma tumors and cell pellets, the fluid sphere model originally proposed by Ander-
son [3] seemed appropriate and was examined. We estimate scatterer sizes,2ae, as well
as the statistical metric,χ2, to evaluate the quality of the data fitting. Table II shows the
results of the Anderson model fits to the carcinoma tumors and cell pellets compared
with fits using the Gaussian model.

The Anderson model provide lowerχ2 values than the Gaussian model, implying
a better fit to the spectral data. Yet the Anderson model provided no significant differ-
ences between the carcinoma and sarcoma scattering data. Furthermore, the estimated
size of the scatterers obtained using the Anderson model were significantly larger than
the nuclear size as observed using optical microscopy.

Closer examination of cellular structure indicated that the fluid sphere model for
cell scattering was too simplistic. It should also take into account the cytoskeletal struc-
ture as well as the nuclear structure. The cytoskeleton is made up of actin filaments, mi-
crotubule network, and other organelles. The cytoskeleton is important in determining
the density and compressibility of the cell body outside of the nucleus. The Anderson
model assumed that the density and compressibility of the cytoplasm and cytoskeleton
was constant throughout.

A new model was constructed based on the idea that the density and compress-
ibility of the cytoskeleton played an important role in cellular scattering of ultrasound.
Fig 6(left) shows a diagram of the proposed intracellular matrix structures for acoustic
modeling of the cell [7, 23, 74]. The nucleus has different mechanical properties from
the actin filaments and microtubules. The microtubules attach to the nucleus and fan out
radially to the edges of the cell. It is conjectured that microtubules increase the average
density and reduce the compressibility of the cytoplasm. Because the microtubule net-
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works are bundled more densely at the surface of the nucleus and less densely at the cell
edges, the impedance of the cell is modeled as a continuously increasing value from the
edge of the cell to the nucleus.

The new cell model has a variable acoustic impedance as shown in Fig 6 (right).
This model was used to construct a 3-D spatial autocorrelation function of the cell and
therefore a new form factor model for estimating scatterer sizes from the carcinoma and
sarcoma data. Table II compares these values to those of the other models. Size estimates
were not much different. Also the uncertainty in estimates andχ2 values suggest the
fits to the tumor data was poor particularly for carcinoma. The poor performance of the
model is most likely due to our assumptions about the acoustic impedance of the cellular
organelles. As that data becomes available, the extra degrees of freedom provided by
the new model will help us obtain more accurate descriptions of tissues at the cellular
scale. New data also suggest that accuracy will improve as the bandwidth of transducers
increases. The results suggest that scatterer size imaging could provide a noninvasive
histological image of breast tumors.

No animal model can mimic all aspects of human breast cancers. Models are se-
lected for their ability to imitate specific features of tumor growth, so the appropriateness
of one animal model over another depends on the goal of the study and the tissue feature
under investigation. For example, a model that exactly mimics integrin expression may
be inappropriate for developing ultrasonic methods unless the organization of tumor cells
and associated connective tissues also mimic human disease. There are significant differ-
ences in stromal structure between murine models and human breast cancer [75]. Unlike
humans, mouse mammary stroma is primarily adipose tissue. Although the density and
organization of structures are different at the macroscopic scale, the cells and associates
structures are very similar. These differences do not limit the utility of mouse models for
identifying the acoustic scattering sources. However rodent models are less useful for
studying tissue elasticity because it is the interconnectivity among scattering structures
that provides image contrast, as we now describe.

6. Viscoelasticity Imaging

6.1. Biological motivation

Mammary lobules and associated ducts in glandular tissues are key functional units and
primary sites for neoplastic growth (Fig 1). As outlined in Section 2, connective tissues
in glandular regions react strongly to the presence of neoplastic growth. Since connective
tissues also provide most of the structural support of the tissue, it is natural to investigate
whether images of viscoelastic properties could help us detect and classify lesions.

The mechanical properties of mammary glandular tissue under compression depend
on the organization of the inter- and intralobular connective tissues. Both are composed
of a collagenous matrix surrounded by a viscous polysaccharide ground substance [67].
This extracellular matrix constitutes most of the stromal mass. To understand how cancer
affects the mechanical properties of the stroma, we examine the structure of the ECM
and the fibroblasts that generate it.

It is the fibroblast cells, sparsely dispersed among the connective tissues, that form
helical protein fragments from available amino acids linked by peptide bonds (see Fig
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Figure 7. The molecular structure of type I collagen.

7(a)) [38]. Fragments self-assemble into triple helices with charged side-chains (Fig 7(b))
known as tropocollagen [69]. After excretion from fibroblast cells, the propeptide ends
are removed and the tropocollagen polymerize into regular patterns by covalently bond-
ing their ends to form microfibrils (Fig 7(c)) that then aggregate into cable-like bundles
of type I collagen fibers (Fig 7(d)).

ECM is a random network of collagen fibers onto which hydrophilic proteoglycan
molecules attach [38, 40]. Proteoglycan molecules contain sulfate groups that are dense
with negative electric charges. Dense surface charges organize or “structure" the sur-
rounding polar water molecules [15] to produce a viscous fluid – the polysaccharide gel
or ground substance – that embeds the collagen matrix (Fig 8). The higher the collagen
density, the more viscous is the polysaccharide gel. Cells can attach to the ECM and move
along the matrix through the glycoprotein anchor points, fibronectin and laminin [11].
Normal stromal ultrastructure is constantly changing with the natural monthly growth
and decline of glandular breast tissues.

Matrix fibers are interconnected at their ends and sparsely at mid points with strong
covalent bonds. These generate an elastic response of the tissue to stress. Nothing we do
in strain imaging changes thecovalent cross links.

More prevalent are the much weaker and reversiblehydrogen-bonded and electro-
static cross linksfound throughout the ECM. H-bonds maintain the helical shape within
fibers and stabilize the matrix. Therefore they generate an elastic restoring force immedi-
ately after being stressed, but delay and dissipate some of the strain energy when the frag-
ile bonds break and reform at a lower energy state. This is a viscoelastic response to ex-
ternal compression similar to the combination of spring and shock absorber on automo-
biles. The strength and density of inter-fiber H-bonded cross links increase with collagen
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Figure 8. Ultrastructure of breast stroma.

density. Therefore it is reasonable to expect that fibrous tumors are not only stiffer than
the surrounding regions but the higher cross-link density delays the full strain response
for a longer time. These effects generate contrast for several viscoelastic features.

Unfortunately, as with all imaging techniques, patient diversity reduces class dis-
criminability. It has been observed that the desmoplastic response of breast tumors varies
among patients, from predominantly cellular (myofibroblast) proliferation having little
added collagen to scirrhus masses with few cells [76]. Therefore elasticity imaging can
be expected to reveal a range of tumor responses, from soft lesions [57] for cellular
desmoplasia to very stiff lesions [33] for collagenous desmoplasia [21]; the latter are
palpable while the former are not. Also, there is a reduction in relative glandular vol-
ume and the ratio of collagen to ground substance after menopause, which tend to soften
breast tissues in older patients. Countering this effect is an age-dependent increase in
the number of covalent bonds among collagen fibers. Depending on the balance of these
effects, the viscoelastic properties of breast tissues can vary significantly with patient
age. Finally, the cyclic building and eroding of normal glandular breast tissue in pre-
menopausal women produces as much as two-fold variations in elastic moduli during
the menstrual cycle [39,67]. For these reasons, spatial variation in viscoelastic properties
within a breast at one point in time (image contrast) is more likely to be diagnostic than
the values themselves.

Benign solid tumors, like fibroadenomas, often feature increased collagen density
(Fig 9(a)). Greater fiber density reduces the inter-fiber distance fibers and increases the
density of viscous ground substance. The proximity of the collagen fibers further sug-
gests greater H-bonded cross-link density. Consequently, we expect fibroadenomas and
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Figure 9. Changes in stromal ultrastructure for benign (a) and malignant (b) tumors.

other collagenous benign tumors to be stiffer than the surrounding tissues (palpable) and
more viscous.

In infiltrating ductal carcinomas, however, the proteoglycan molecule concentration
does not increase with collagen density (Fig 9(b)). Electron microscopy shows that the
number of sulfated proteoglycan molecules per unit volume decrease by as much as a
factor of 5 in the dense interlobular connective tissues and a factor of 14 in loose in-
tralobular tissues [40]. The thinning of the polysaccharide gel is modified by a two-fold
increase in the length of the remaining proteoglycan molecules. Thus malignant tumors
can be stiffer than the surrounding tissues because of increased collagen but, unlike be-
nign collagenous processes, the viscosity of the polysaccharide gel does not increase.
Stiffness also increases as stromal fibroblasts generate large amounts of fibronectin in
the tumor ECM except near the margins where fibronectin density is reduced [11]. Fi-
bronectin density on the surface of malignant epithelial cells is also low [38]. The reduc-
tion in adhesion sites is thought to promote metastasis [62]. The patient scans in Section
6.5 show significant differences in viscoelastic properties between benign and malignant
tumors that are consistent with the above molecular-scale description.

6.2. A physical model

Imaging techniques are best developed using simple materials with known tissue-like
features – imaging phantoms. It is well known that water-based gelatin do mimic several
key ultrasonic properties of breast tissues such as sound speed, dispersion, density, and
frequency-dependent absorption and backscatter [41]. Like breast stroma, reconstituted
gelatin is a random matrix of type I collagen fibers [77]. Unlike stroma, however, there
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is no polysaccharide ground substance. Nevertheless, the elastic properties can be made
reasonably tissue-like [24] despite the very different ultrastructures.

The imaging methods described below are tested using water-based gelatin gels,
where mechanical properties are adjusted by varying gelatin concentration and/or adding
chemical cross-linking agents. We use Type-A animal-hide gelatin (6% by volume,
Fisher Chemicals, Fairlawn NJ) in a water-propanol solution with chemical cross-linkers.
While basic phantom construction is detailed in [24], there are newer materials with more
stable elastic features [42]. We conjecture that the collagen matrix in gelatin is represen-
tative of mammary connective-tissues regarding matrix mechanics, although the water
structure near the collagen is weaker (lower viscosity) from the lack of ground substance.
There is structured water due to the polar side chains on the collagen (Fig 7). For the
purpose of developing imaging methods, gelatin mimics key aspects of connective breast
tissues even though the viscoelastic parameters are likely to be different.

Advanced biopolymers are available for mimicking detailed features of breast tis-
sues. Some investigators [48] study cellular developmental processes of breast cancer by
culturing cells in Matrigel (BD, Franklin Lakes NJ). Matrigel is a solubulized basement
membrane preparation extracted from mouse sarcoma tumors rich in ECM proteins. It
has type IV collagen, laminin, and sulfated proteoglycans that provide an ECM envi-
ronment for epithelial cells to study their developing morphology, biochemical function,
and migration. Our studies have not yet progressed to the point where we need such a
detailed phantom.

6.3. Mechanics of viscoelastic polymers

Much of the following section is an application of analytical solid mechanics [19,20,68]
to polymers [17], which include mammary connective tissues. It is the physical basis for
viscoelastic measurements.

The relationship between strain imaging features and connective tissue ultrastructure
indicative of disease is made apparent through the constitutive equation that describes
linear viscoelastic behavior of water-based polymers. The basic equation is found by
applying the Boltzmann superposition principle to Hookes’s law for small displacements,
deformations, and deformation rates [68]. Let the stress and strain tensors be represented
by σij andεij , respectively. For a 3-D Hookean solid, we find the well known equation
for elastic deformation [20]

εij = Cijklσkl , (8)

where material properties of the polymer are elements of a fourth-order compliance ten-
sorCijkl. Eq (8) describes a purelyelastic mediumwhere stress affects strain instanta-
neously. Fung [19, 20] analyzed the thermodynamics of elastic polymer deformation to
show that the stresses in a deformed matrix are derived from two sources: the increase
in specific internal energy(internal energy per mass) of the highly-structured collagen
fibers (Fig 7(d)) and the decrease in specific entropy (entropy per unit mass) as random
matrix fibers become spatially ordered.

Now consider the strain response of aviscoelastic mediumto the same stress stim-
ulus. A portion of the strain response is delayed [20]. Let the medium be initially at
rest until a small (unspecified) force is applied at timet = t0. We find that infinitesi-
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mal stresses form within volume elements of the medium, and the strain responses vary
in both timet and spacex. The stress in the volume element atx is dσij(x, τ), where
τ = t − t0. The induced strain increment isdεij(x, t) = Cijkl(x, t − τ) dσkl(x, τ) for
τ > 0. Dropping tensorial subscripts for notational simplicity, we find

ε(x, t) = ε0(x) +
∫ t

t0

dτ C(x, t− τ)
∂σ

∂τ
(x, τ) . (9)

ε0(x) is the strain tensor for the instantaneous elastic response (Eq (8)) that occurs imme-
diately after applying the load. The convolution integral on the right is the time-varying,
viscoelastic response. Eq (9) tells us that strain at timet depends on the initial elastic
response and a weighted sum of retarded (viscoelastic) responses.

As in many engineering problems involving linear systems, we find it easier to work
in the Laplace domain than in the time domain. Adopting the notation

f̃(x, s) =
∫ ∞

0

dt exp(−st) f(x, t)

to define the one-sided Laplace transform, Eq (9) becomes

ε̃(x, s) =
ε0(x)

s
+ sC̃(x, s)σ̃(x, s)

=
ε0(x)

s
+

[(
1
9
Ã(x, s)− 1

6
Ũ(x, s)

)
Σ̃(x, s) +

1
2
Ũ(x, s)

]
σ̃(x, s) . (10)

The second form of Eq (10) is a simplification valid for isotropic media [68]. In an
isotropic medium, the material properties are the same in all directions. This is an excel-
lent assumption for the loose intra-lobular connective tissues but a weaker assumption
for the dense inter-lobular connective tissues, where fibers can form patterns.Ã(x, s) de-
scribes how stress on the medium element located atx changes its volume, whilẽU(x, s)
describes how stress changes its shape. AlsoΣ̃ = (σ11 + σ22 + σ33)δij , whereδij is the
Kronecker delta.

The next step is to specify the time-varying applied stress. In static strain imaging,
we apply a uniaxial ‘step-and-hold’ load to the unconfined polymer sample att0. (Actu-
ally we use a short-duration ramp function that approximates a step function.) This is a
classic compressivecreepexperiment [68] as applied to imaging: we begin recording RF
echo frames while quickly pressing the transducer into the sample a few millimeters and
holding it so that the applied force remains constant over time while continuing to scan.
An example of the time-varying strain (creep) curve is given in Fig 10.

The stress tensor in this experiment has just one nonzero element,σ̃11(s) = σ0/s.
There are three nonzero elements of the strain tensor,ε̃11(s) and ε̃22(s) = ε̃33(s). So
Eq (10) gives the strain in the direction of the applied stress (and the direction of the
ultrasound beam) as

ε̃11(x, s) =
ε0(x)

s
+

(
1
9
Ã(x, s) +

1
3
Ũ(x, s)

)
σ̃11(x, s)

=
ε0(x)

s
+ D̃(x, s)σ0/s , (11)
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whereD̃(s) , Ã(s)/9+ Ũ(s)/3 is theviscoelastic compliance. Ã andŨ are fundamen-
tal properties of the medium because they can be directly related to Lamé constants [68],
analogous to bulk and shear moduli.D̃(s) is a derived quantity applicable to our exper-
imental geometry, in the manner of Young’s modulus. The relationship betweenD̃ and
other compliances and moduli is given in [68]. Eq (11) expresses how the one compo-
nent of the strain tensor that we typically measure in static strain imaging experiments
depends on material properties, viaD̃(x, s), for a uniaxial compressive force applied to
an unconfined polymer. Changing the experiment will result in a new equation.

We don’t know anything about the viscoelastic compliance until we model Eq (11)
from experiment. In this respect, viscoelastic modeling is truly an empirical science. It
turns out that the response of many parenchymal tissues follows the standard (Kelvin)
linear model for viscoelastic solids [20]. Adopting the Kelvin model allows us to propose
physical mechanisms for the creep response that relate the constitutive equation of Eq
(11) to measurements from gelatin and tissues. The Kelvin model is anLth-order discrete
system [68] of the form

D̃(s) =
L∑

`=1

D`

1 + T` s
+

{
1

η0s

}
.

Braces{·} indicate that the last term may or may not be present depending on the exper-
imental conditions. Substituting this discrete model into Eq (11) and taking the inverse
Laplace transform gives the time-varying strain imaging expression,

ε11(x, t) = ε0(x) +

(
L∑

`=1

D`(x)(1− e−t/T`(x)) +
{

t

η0(x)

})
σ0 . (12)

The first term on the right side of Eq (12) is the instantaneous elastic response of the
medium, where most likely the stretching of covalently bonded matrix molecules con-
tributes prominently. Immediately after applying a force, the medium behaves as an in-
compressible fluid. The last term (in braces) describes inelastic fluid flow; it is parame-
terized by the spatially-varying coefficient of viscosityη0. In tissues this response could
be flow in the vascular space, and in gelatin it could be nonviscinal (unstructured) inter-
stitial water flow. Inrheodicticmedia [68], the ratioσ0/η0 is finite so the material con-
tinues to creep until it collapses. Inarrheodicticmedia, as illustrated in Fig 10,σ0/η0 is
small enough that the strain plateaus and the polymer stops creeping once the viscoelas-
tic response has relaxed. During the plateau region of the curve, the material behaves
like a compressible solid. The center terms of Eq (12), represented by the summation,
are viscoelastic responses. We conjecture that they are from H-bonded cross links and
viscinal water flow.

An example of a second-order viscoelastic response of a hydrogel polymer during a
compressive creep experiment is given in Fig 10. The amplitudesD` and time constants
of the strain retardanceT` parameterize the viscoelastic response. Instress relaxation
experiments,T` arestress relaxationtime constants. However, increepexperiments, they
define how long the strain response is delayed and thus are known asstrain retardance
time constants.

It is well known that discrete models can validate hypothesized mechanisms but
cannot be used to determine the number of mechanisms (model order), as we might
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Figure 10. (left) A second-order viscoelastic creep curve (left) from a gelatin phantom is modeled using
Eq (12) and representative parameters. Immediately after applying the force, the medium responds like an
incompressible fluid. After the viscoelastic responses have decayed, the medium enters the solid phase. (right)
The imaginary part of the frequency spectrum for this arrheodictic sample (σ0/η0 ' 0) is shown. In this
exampleL = 2, D2/D1 = 2.5, T1 = 3 s,T2 = 100 s.

hope. Fung [20] enumerates the difficulties encountered while attempting to determine
the model order by fitting mathematical expressions to experimental data. While he sug-
gests alternatives, including a continuous model of compliance, we nevertheless adopt
a second- or third-order discrete model because we find it consistently fits gelatin data
from our experiments. A parallel analysis in breast tissue is forthcoming.

6.4. Imaging viscoelastic parameters:ε0 andT`

Viscoelastic parameters are measured from a time series of strain images recorded during
a step compression of the sample. The phantom experiment photographed in Fig 11 has
been adapted for clinical patient scanning using freehand compression [57].

Strain images are computed from frames of recorded RF echo signals. We use a
Siemens Sonoline Antares ultrasound system (Mountain View, CA) with the ultrasound
research interface (URI) option that records beamformed RF frames. In a typical experi-
ment, a VF10-5 linear array transmits broadband pulses at 10 MHz. One or two transmit
focal zones are applied, and dynamic receive focusing with f/2 aperture growth is used.
Viewing the real-time B-mode image display and adjusting the depth-gain compensation
manually to give constant echo amplitude, an operator records RF data up to 40 mm of
depth at a sampling rate of 40 Msamples/s. We control the frame rate on the system’s
ECG triggering module from a waveform generator. Frame rates between 1 and 200 Hz
can be easily selected with less than 15 ms uncertainty. Up to 0.25 GB of echo data can
be recorded before it must be transferred to disk or DVD archive for off-line processing.
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Figure 11. (left) Photograph of an ultrasonic viscoelastic imaging experiment using a gelatin phantom sample.
(right) Method for imaging retardance time constantT1 using a time series of strain images. This arrheodictic
medium is represented by a 1st-order discrete model. The central region of the phantom has three times the
gelatin concentration and therefore is stiffer (dark region in strain sequence) and more viscous (longerT1).

Strain images are formed from correlation-based displacement estimates. Local dis-
placements are measured from pairs of RF data frames acquired for the same region in
the object at different times. Either the multi-resolution cross correlation (MRCC) algo-
rithm [9] or the regularized optical flow algorithm [56] was applied for displacement es-
timation. Although there are several algorithms that might be used for local displacement
estimation [22], the best choices for imaging creep curves are those with the highest sen-
sitivity to small motion [71]. There are several overviews of ultrasonic strain imaging
algorithms in the literature, e.g., [35].

With the MRCC algorithm, local displacements within the scan plane of the de-
formed object are found from 2-D correlation lags at different spatial scales [9]. First,
the coarsest estimates of displacement are used to measure and compensate for the aver-
age displacement (see Eq (4)) applied to one frame with respect to another. The process
of warping echo data in a frame to compensate for the average physical deformation is
known asglobal companding.1 Second, displacements measured at an intermediate-size
spatial resolution are recorded and used to warp the echo fields via a local companding
process. Finally, displacements are measured at the highest spatial resolution by 1-D cor-
relation of twice companded echo frames. Interpolation provides estimates of sub-sample
displacements. Components of displacement along the ultrasonic beam axis at each stage
are summed and filtered by a two-sample FIR differentiator to form strain images. Axial
strain pixel size is determined by parameters set at the final stage of displacement esti-
mations. However, each stage of the estimation process and the echo impulse response
of the instrumentation determine spatial resolution of the strain image [35].

1Companding is a concatenation of the words compression and expanding. It is most commonly used in
the radar time delay estimation literature. In this process, displacements are estimated on a coarse spatial grid,
then the pre-compression echo field is warped accordingly so it more closely matches the post-compression
field [27]. The process is repeated at increasingly finer scales. Warping at one scale improves displacement
estimates at a finer scale.
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An RF frame acquired just prior to applying a “step" load is the reference frame to
which subsequent RF frames at discrete timestk = k∆t (Fig 11) are recorded and the
sequence of strain images produced. Strain images are spatially registered before each
pixel is fit in time to Eq (12) as shown in Fig 11. Images ofε0(x) (elastic strain) and
T`(x) (viscoelastic retardance times) are formed from the fits, where we setL = 1,2,3
depending on the sample and the experimental conditions.

Proper sampling of the creep curves in Figs 10 and 11 is critical. This particular
sampling is controlled by the RF echo frame rate. The bandwidth of the creep curve
is unknown a priori since viscoelastic mechanisms for gelatin and tissues are mostly
unknown. So we examine the frequency spectrum obtained from the one-sided Fourier
transform of just the viscoelastic (VE) terms in Eq (12):

ε̃V E(x, iω) =
L∑

`=1

ε`

(
1− iωT`

1 + ω2T 2
`

)
, (13)

whereε` , D`σ0. The imaginary part of Eq (13) is plotted on the right side of Fig 10.
For the second-order model in this example (see parameters in caption) we find spectral
peaks at radial frequenciesω` = 2πT−1

` given by the retardance times. The height of
the peaks are−ε`/2 and the individual peak bandwidths are∆ω`/2π = 2

√
3T−1

` Hz
(defined as full width at half maximum).

In gelatin, we often require a total acquisition timeTacq ' 1000 s to observe a
second-order VE processes withT1 = 1-10 s andT2 = 60-150 s. The frame rate of the
ultrasound system determines the highest frequency in the spectrum of Fig 10 whileTacq

determines the lowest frequency (= frequency resolution). In the Fig 10 example, the two
VE retardance components are clearly separable. However ifT` values are more similar,
it is unlikely they would be discriminable given that the width of each peak increases in
proportion to its peak frequency. We are accumulating experience with viscoelastic mea-
surements in gelatin to learn how to create patient images [66]. Despite the relative sim-
plicity of cubic samples of homogeneous gelatin, we are discovering that the VE com-
ponents change with fairly minor difference in experimental conditions, water context,
pH, stress history, etc., while the image contrast is much less sensitive. We approached
patient trials with much concern. Yet, as we show next, the early results are encouraging.
Limited experience suggests that live tissues have VE components with larger amplitudes
and shorter retardance times than gelatin. This is fortunate since practical acquisition
times for clinical creep curves must be within a breath hold.

6.5. Clinical imaging

We obtained a time series of RF frames from female patients with clinically identified
breast lesions that were biopsied immediately after our study. Sonograms, elastic strain
images, andT1 images were obtained from one patient with two benign lesions (fibroade-
nomas) and a second patient with one malignancy (IDC), as shown in Fig 12. Data were
acquired using the Antares system and a hand-held linear array (VF10-5) at 8 MHz. We
acquired 20 frames per second over 20 seconds. Details of the RF acquisition and strain
image formation algorithm are provided elsewhere [57].

As is commonly observed, each lesion is hypoechoic and appears stiffer than its
surroundings. The most likely cause is edema from the lymphatic system that frequently
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Figure 12. Clinical images of benign fibroadenomas (top row) and a malignant IDC (bottom row). Sonograms
(S), elastic strain images (ε0), and retardance time constant images (T1) for a first-order viscoelastic model
are shown. Lesions are outlined. Patient studies were acquired under an approved IRB protocol.

fails near the tumor site. In this example, the IDC tumor appears larger in the elastic
strain images than in the sonogram, which is a sign of a desmoplastic response of the
malignancy. Conversely, the benign lesions are approximately equal size in sonograms
and strain images. Unfortunately some malignancies do not generate desmoplasia or may
be of equal stiffness or softer than their surroundings [57]. Thus we increase our feature
space for diagnosis by examiningT1.

Since we acquired only 20 s of data to generate our creep curve, we decided to use a
first-order discrete VE model. For the benign lesions (top row of Fig 12), we clearly see
a three-fold increase inT1 relative to the background. This finding is consistent with our
hypothesis regarding benign lesions as outlined in Section 6.1. Despite being hypoechoic,
there is an increase in the concentration of normally structured collagen. Consequently,
the retardance time in the lesion increases with the greater viscosity of highly structured
water: lesionT1 values are large (bright).

The malignant lesion (bottom row of Fig 12) appears to also be edematous and have
increased collagen density, like the fibroadenomas, but the expected reduction in pro-
teoglycan molecules thins the ground substance so the viscosity is roughly equal to the
background. We see thatT1 value is approximately 3 s, similar to background values.
However, examining the region immediately surrounding the malignant lesion (an area
roughly equal to the lower strain region believed to indicate desmoplasia), we see that
T1 is elevated. This might indicate that the ECM within the desmoplastic reaction might
have a structure similar to benign lesions. If after further study on more patients we
consistently find this pattern of appearance, it is possible thatT1 images may provide
important new diagnostic information.
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The short 20 s acquisition time used to measure the creep curve in patients is un-
likely to reveal all of the viscoelastic components. If we use a 20 s acquisition time for
data in Fig 10, the frequency resolution would be reduced so that the lowest frequency
observed would occur atω/2π = 0.05 Hz, and we would see only the low-amplitude,
high-frequency peak. This was the reason we used only a first-order VE model in our
early studies. Future work will include longer acquisition times to estimate and remove
theσ0t/η0 terms and discover the bandwidth of breast tissue viscoelasticity. Neverthe-
less the highT1 contrast for tumor imaging is very encouraging despite the truncated
acquisition of the clinical study. The appearance of the images is consistent with known
changes in the molecular structure of breast stroma during disease formation.

7. Summary

This chapter describes ultrasonic methods for imaging mechanical properties of tissues
that are useful for detection and classification of cancerous breast lesions. The methods
were designed after careful consideration of the molecular biology and histology of the
most prevalent disease processes. Because these techniques are new, they have not yet
been subjected to the close scrutiny of comprehensive in vivo trials. Consequently we
have yet to discover all the limitations that will help determine efficacy. However the
preliminary results summarized here suggest that when the full diagnostic potential of
ultrasonic imaging is discovered, it is likely to have a bright future for both clinical
imaging and as a research tool for scientific investigation.
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