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Modeling and Phantom Studies of Ultrasonic
Wall Shear Rate Measurements Using Coded

Pulse Excitation
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Abstract—Wall shear rate (WSR) is the derivative of
blood velocity with respect to vessel radius at the endothe-
lial cell (EC) surface. The product of WSR and blood viscos-
ity is the wall shear stress (WSS) that has been identified as
an important factor for atherosclerosis development. High
echo signal-to-noise ratio (eSNR) and high spatial resolu-
tion are crucial for minimizing the errors in WSR estimates.
By transmitting coded pulses with time-bandwidth prod-
uct greater than one, high eSNR from weak blood scatter
can be achieved without increasing instantaneous power or
sacrificing spatial resolution. This paper summarizes a se-
ries of measurements in a straight tube (5-mm diameter),
constant velocity flow phantom using a 10 MHz transducer
(60% bandwidth, f/1.5) imaged with a 72� Doppler angle,
125 MHz sampling frequency and 1 kHz pulse repetition
frequency. Measurements were made using a frequency-
modulated (FM) code, phase-modulated (PM) codes, and
uncoded broadband and narrow band pulse transmissions.
Both simulation and experimental results show that coded-
pulse excitation increases accuracy and precision in WSR
estimation for laminar flow over a broad range of peak ve-
locity values when compared to standard pulsing techniques
in noise-limited conditions (eSNR � 30 dB). The code se-
quence and its length are selected to balance range lobe
suppression with eSNR and echo coherence enhancements
to minimize WSR errors. In our study, the combination of
an eight bit Optimal coded pulse with a Wiener compres-
sion filter yielded the highest WSR estimation performance.

I. Introduction

Cardiovascular disease has been the leading causes
of mortality in the United States since 1900 [1]. It

often develops from atherosclerosis [2], which is an arte-
rial disease characterized by the accumulation of lipids
and calcified tissues within the vascular wall. Hemody-
namic shear stress acting on the endothelial cell (EC)
surface has been identified as an important physiologi-
cal mechanism for control of arterial tone [3]. See Ta-
ble I for abbreviations used in this paper. However, low
(<0.4 Pa, 1 Pa = 10 dyne/cm2) [4] and oscillating wall
shear stress (WSS) patterns induce both structural and
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TABLE I
List of Abbreviations.

CC cross correlation
EC endothelial cell
ECG electrocardiogram
eSNR echo signal-to-noise ratio
FM frequency modulated
IVUS intravascular ultrasound
MF matched filter
PM phase modulated
PRF pulse repetition frequency
psf point spread function
RF radio frequency
TBP time-bandwidth product
TEQ tissue equalization
WF Wiener filter
WGN white Gaussian noise
WSR wall-shear rate
WSS wall-shear stress

functional changes in endothelial cells, leading to arterial
wall remodeling, atheroma, and eventually atherosclero-
sis [5].

WSS is estimated from the product of wall shear rate
(WSR) and blood viscosity µ:

WSS = µ WSR where WSR =
dV

dr

∣∣∣∣
r=r0

, (1)

r is the radial position within the vascular lumen and r0
is the instantaneous lumen radius.

Fig. 1 shows that the shear rate for laminar flow is great-
est at the EC surface where blood velocity V is minimum.
However, the measured velocity profile is blurred by the
estimation process, thus velocity gradient estimates, and
consequently shear-rate estimates, are biased. The bias is
greatest at the lumen surface, at which WSR influences EC
function. The bias can be reduced by increasing the pulse
bandwidth and shortening the echo window used to lo-
calize velocity estimates; however, the sensitivity to blood
echoes is often degraded. The loss of sensitivity decreases
the echo signal-to-noise ratio (eSNR) and ultimately in-
creases WSR variance. Thus, we improve WSR bias or
variance at the expense of the other. Another challenge to
accurate velocity estimation near the vessel wall is brought
on by the large difference between echo amplitudes inside
(blood) and outside (tissue) the lumen for transmission fre-
quencies less than 20 MHz. Hughes and How [6] reported
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Fig. 1. Predicted and measured profiles of (a) flow velocity and
(b) shear rate magnitude across a laminar flow channel of radius
r0. WSR is measured at channel r = r0.

a 28% error in WSR estimates that resulted from an 8%
error in velocity at 20 MHz.

The available ultrasonic flow imaging techniques used
for WSR measurement include estimation with narrow-
band pulsed Doppler [7] and broadband cross-correlation
[8] methods, in which each can be combined with contrast
media [9]. We discounted the use of contrast agents to in-
crease eSNR near the vessel wall because a radial pressure
gradient pushes blood cells and contrast particles toward
the center of the lumen via Bernoulli’s law [10], [11]. From
data we acquired with the Siemens Antares system using
five-cycle Doppler pulses, 16-pulse ensembles, and an au-
tocorrelation estimator, we found a −28% bias and a 15%
standard deviation in WSR estimates for laminar flow.
Though WSR variance can be reduced by extending the
pulse duration or increasing the packet size [12], the con-
comitant loss in spatial and temporal resolution reduces
WSR measurement accuracy. Broadband pulsing coupled
with cross-correlation velocity estimation was selected for
WSR estimation because it offers greater temporal reso-
lution and velocity accuracy in slow flow conditions [13].
To minimize the correlation window duration for reduced
WSR bias, we increased eSNR via coded pulse excitation
methods.

Coded excitation uses long-duration pulse sequences
that have a time-bandwidth product (TBP) greater than
one [14], [15]. This feature increases the time-averaged sig-
nal energy without increasing the spatial-peak acoustic in-
tensity or mechanical index. Ideally, eSNR gain equals the
TBP of the transmitted pulse [16], the filtering applied to
received echoes is able to compress the pulse entirely to re-
store spatial resolution, and there is no loss of frame rate.
The challenge to approaching ideal performance is to find
combinations of parameters for transmitting pulses and
filtering echoes which minimize the distortions that spoil
code orthogonality. Incomplete pulse compression gener-
ates range side lobes that reduce contrast resolution and
yield biased WSR estimates. Ultrasonic-coded excitation
techniques have been successfully applied to B-mode [15],
[17], flow [18], strain [16], and intravascular ultrasound
(IVUS) flow [19] imaging applications. The demands of

Fig. 2. Echo-signal model with flow.

each application generate unique coding requirements that
modify the code type and duration and the compression
filter parameters. This paper describes our efforts to op-
timize coded excitation for broadband WSR estimation.
Performance is evaluated in terms of the tradeoff between
WSR standard deviation and bias.

II. Methods

A simple signal model of one spatial dimension is di-
agrammed in Fig. 2. It was used to simulate ultrasonic
echo acquisitions during flow experiments. This model also
closely describes our experimental design. Consequently,
Fig. 2 serves as an outline of the simulation and experi-
mentation methods for this study.

A voltage waveform is applied to the transducer to gen-
erate the pulse-echo point spread function of the ultra-
sound system h. Echo data g are generated through a lin-
ear transformation of the object f via h. The echo data
from coded transmissions are filtered to decode the pulse
sequence and produce gd. The results are amplitude equal-
ized before velocity and WSR are estimated. Each of these
processes is described below.

A. Excitation Pulses

The spatiotemporal point spread function of the imag-
ing system is the temporal convolution of the voltage wave-
form e and the pulse-echo impulse response of the system
hs, h(mT, x) =

∑∞
m′=−∞ e[m − m′]hs(m′T, x), in which

time is uniformly sampled1 and 0 ≤ m ≤ M−1. Two types
of excitation pulses are included: standard, short-duration,
Gabor pulses with TBP = 1, and phase modulated (PM)
or frequency modulated (FM) coded pulses with TBP > 1.

1. PM Coded Pulse Sequences: Optimal codes [20] were
selected because of their spectral properties and ease of im-
plementation. They are optimal in the sense that they give
the flattest spectral response in the bandpass of the trans-
ducer [21]. A flat frequency spectrum means that matched

1RF echo signals are sampled on the time interval T , such that
t = mT for integer m. Echo ensembles are acquired on the pulse
repetition interval Tprf, such that ts = kTprf. Because Tprf � T , t is
called fast-time and ts is slow-time. The pulse repetition frequency
PRF = 1/Tprf.
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Fig. 3. Coded-pulse examples. Top row shows (a) an eight-bit Opti-
mal code, (b) typical base sequence, (c) their convolution resulting in
the excitation voltage waveform, (d) FM coded (chirp) pulse. Bottom
row shows the corresponding frequency spectra.

or inverse filtering applied for pulse compression (decod-
ing) yields comparable results, thus suppression of side
lobes and noise amplification are balanced. Biphasic PM
codes are of particular interest because they can be imple-
mented on many clinical systems.

Detector sensitivity is improved at the cost of reduced
axial resolution by convolving a binary PM code c[m] with
a binary base sequence b[m] [15]. To facilitate this process,
biphasic PM codes c[m] are expanded in time by the inte-
ger factor S > 1 to match the sampling rate of the pulse
generator, ce[m] =

∑
m′ c[m′]δ[m−m′S]. Assume the sam-

pling interval of the pulser and receiver are both T . Then
the voltage waveform driving the transducer is the tempo-
ral convolution:

e[m] =
∞∑

m′=−∞
b[m − m′] ce[m′]. (PM code) (2)

Examples are illustrated in Fig. 3.

2. FM Chirp Pulses: Unlike PM codes, FM codes re-
quire more than binary control of the waveform amplitude
[Fig. 3(d)]. We followed the general technique of Misaridis
and Jensen [22] to generate a linear FM chirp sampled on
the interval T :

e[m] = wc[m] cos(2π((u0 − ∆u/2)mT + α(mT )2)),
(FM code) (3)

where α is the slope of the frequency sweep in megahertz
per microseconds, u0 is the center frequency, ∆u is the
bandwidth, and wc[m] is a 10% cosine taper window func-
tion of duration Tp:

wc[m] =⎧⎪⎨
⎪⎩

1 − cos2 5πmT/Tp 0 ≤ m ≤ Tp/10T

1 Tp/10T ≤ m ≤ 9Tp/10T

1 − cos2 5π(mT − Tp/5)/Tp 9Tp/10T ≤ m ≤ Tp/T

,

(4)

wc is applied to suppress the range side-lobe level of the
compressed pulse by 2 dB compared with a rectangular
window but with some broadening of the pulse length after
matched filtering. Spatial resolution is traded for side-lobe
suppression. In our simulations, α = 1.0508 MHz/µs and
Tp = 2.855 µs. Pulses were simulated with u0 = 10 MHz,
and the fractional bandwidth was 60% so that ∆u/2 =
3 MHz.

B. Echo Signal Generation

The object scattering function f and noise process n
are modeled as random functions of space x and slow
time ts = kTprf [23]. Both are drawn from wide-sense sta-
tionary, white Gaussian noise (WGN) processes, except
that the magnitude of f was adjusted spatially to cre-
ate tissue echoes in simulations that were 25 dB greater
in amplitude than the intraluminal blood echoes. Depth-
dependent signal losses through 2 cm of tissue were sim-
ulated by applying frequency-dependent attenuation β =
β0fx, where β0 = 0.5 dB cm−1MHz−1. For each data point
reported, 150 statistically independent pairs of echo wave-
forms (g[m, k − 1] and g[m, k] in Fig. 2) were generated
for analysis. Only scatterer movements parallel to the ul-
trasound beam axis were simulated in this one-dimensional
(1-D) model. Axial motion was generated by moving blood
scatterers f(x, ts) in x for each ts = kTprf. For discrete
x, subsample motion is achieved by spline interpolation.
The moving object function at ensemble pulse k can be
expressed recursively:

f(x′, kTprf) = f(x, (k − 1)Tprf) for k > 0, (5)

where x′ = x + �x, ∆x = V (x, (k − 1)Tprf) × Tprf, and
V (x, ts) is the x-axis component of scatterer velocity. Scat-
terer displacement varies with position according to the
model adopted for vascular flow.

The mth echo sample recorded from the kth ensem-
ble pulse, g[m, k], is modeled through the continuous-to-
discrete integral transformation:

g[m, k] =
∫ ∞

−∞
dx′ h(mT, x′)f(x′, kTprf) + n[m, k],

(6)

where g[m, k] is the sequence of radio frequency (RF) echo
data for a single line of site, m is the index for samples in
fast time, and k is the index for the waveform ensemble in
slow time. We can simulate narrow band color flow data
by increasing the dimensionality, g[m, k, q], where q is the
index indicating acquisition of an echo ensemble at lateral
position y = q∆y.

Eq. (5) and (6) are related to (1) through V . Assuming
a Newtonian fluid is flowing steadily in a long, rigid chan-
nel without slipping at the walls, a laminar flow profile is
generated with the radial velocity given by [24]:

V (r) =

{
Vmax(1 − r2

r2
0
) r < r0

0 r ≥ r0
.
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Therefore, (1) gives:

WSR = −2Vmax/r0, (7)

where Vmax is the spatial peak velocity. For many appli-
cations, the minus sign is ignored. The beam axis can be
positioned so that the laminar flow limits scatterer motion
to the image plane, and thus echo decorrelation is minimal.

Flow parameters for simulations were chosen to match
the experiment settings: a 5-mm diameter flow channel
with Vmax = 500 mm/s imaged at 72◦ Doppler angle with
PRF = 5 kHz. The true WSR for this simulated data is
400 s−1, which is in the normal range for mean WSR in
carotid arteries [25]. As Vmax varies, PRF is adjusted so
that VmaxTprf = 0.1.

C. Pulse Compression and eSNR Definitions

We apply a Wiener filter w[m] to echo waveforms g[m, k]
to decode (spatially compress) the point spread function
[17], i.e., gd[m, k] =

∑
m′ w[m − m′] g[m′, k]. If successful,

spatial resolution is restored and eSNR is enhanced. The
frequency response of the Wiener filter is

W [�] =

{
C∗[�]/(|C[�]|2 + γ/eSNR[�]) (PM code)
E∗[�]/(|E[�]|2 + γ/eSNR[�]) (FM code)

,
(8)

where C∗[�] is the complex conjugate of the discrete
Fourier transform of the code sequence c[m] and eSNR[�]
is a frequency domain representation of the echo SNR de-
scribed below. The index � is related to the continuous
frequency variable u via u = �/MT . Notice that the trans-
mitted voltage waveform e is used to filter FM-coded sig-
nals, and the code without the base sequence c is used
to filter PM-coded signals. γ is a constant that we set to
0.4 in this study. For low-noise echo waveforms (i.e., when
|C[�]|2 � γ/eSNR[�]), the first term in the denominator
dominates the response and the Wiener filter approximates
an inverse filter. Noisy data increases the magnitude of the
second term in the denominator such that the Wiener fil-
ter is essentially a weighted, matched filter. To understand
this weighting, we must define eSNR in the spatial and fre-
quency domains.

1. Spatial Domain: Recall that object scatterers and
additive noise are assumed to be zero mean, WGN pro-
cesses. Consequently eSNR(x) is given by the associated
variances σ2

f and σ2
n and the shift-varying point spread

function (psf) measured after decoding hd [16]:

eSNR(x)(dB) = 10 log
σ2

f

σ2
n

∫
dt h2

d(mT |x)

� 10 logTBP + eSNR′(x).
(9)

The eSNR (coded excitation) exceeds eSNR′ (short-
duration Gabor pulse) by an amount related to the time-
bandwidth product of the code for equal-amplitude pulses.
For TBP = 1 pulses, eSNR′ increases with pulse length at

the cost of bandwidth. However coding provides the pos-
sibility of fixing eSNR′ and bandwidth, then increasing
eSNR by lengthening the code as code length is approxi-
mately proportional to TBP for most PM codes.

For known component variances, as in simulations, (9)
is implemented by placing a point reflector at x. Applying
f(x′, t′s) = δ(x′ − x, t′s − ts) to (6) and ensemble averaging
over noise, E{·}n, [16]:

hd(mT |x) = E{gd[m, k]}n.

For unknown component variances, as in experiments,
we measure the net sample variance of decoded echo sig-
nals σ̂2

gd
in a homogeneous scattering region and σ̂2

n in a
scatterer-free region, then we approximate:

eSNR(x) � 10 log(σ̂2
gd

/σ̂2
n − 1). (10)

2. Frequency Domain: eSNR is the ratio of power spec-
tra for the noise-free echo signal and the noise alone at
position x:

eSNR[�] =
E

{
|E{Gd[�, k]}n|2

}
f

E{|N [�]|2} =
|Hd[�]|2E{|F [�, k]|2}f

E{|N [�]|2} .
(11)

Of course, to compute the Fourier transforms, we as-
sume an analysis region exists in signal space where f is
wide-sense stationary and hd is shift invariant. Ensem-
ble averages on the far right of (11) are constant over
frequency and proportional to the corresponding vari-
ances. By summing over frequency and invoking Par-
seval’s formula, it is easy to show that eSNR(x) =
10 log

∑
� eSNR(�/MT ).

D. Signal Conditioning

By focusing on time-domain cross correlation (CC)
measurements of slow velocity for broadband signals, clut-
ter filters are not applicable. However, velocity estimation
is challenged significantly by echo nonstationarity, e.g.,
when there is a difference in mean echo amplitudes inside
and outside the lumen. The problem is that displacements
estimated using CC estimators can be unbiased only for
wide-sense, stationary, random processes. When the cor-
relation window straddles the vascular wall, displacement
estimates are influenced by motion of wall echoes more
than motion of blood echoes because of the greater ampli-
tude of wall echoes. This effect appears in the color-flow
format of Fig. 4(a) as an apparent loss of the steady flow
near the motionless phantom wall.

To minimize this loss of motion sensitivity, we precon-
dition gd echo signals by equalizing the RF echo intensity
across the flow channel. Like depth-gain compensation, tis-
sue equalization (TEQ) applies a spatially varying gain to
the echo signal before correlation to equalize signal vari-
ance. As shown in Fig. 4(b), much of the low flow is re-
stored. The amplitude distortions from TEQ are accept-
able because we are only interested in the signal phase.
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Fig. 4. Color flow images from the CC estimator (a) without and
(b) with TEQ processing. (c) RF signals before and after TEQ.

Furthermore, TEQ does not change eSNR(x). When the
bandwidth of the pulse and the PRF are set high enough
so that scatterer displacements over the interval Tprf were
smaller than the speckle correlation length, TEQ gener-
ated no velocity bias.

E. Velocity Estimation

Accurate (low variance) and precise (low bias error) es-
timates of WSR require that there be minimal velocity
variance and bias in the low flow-velocity range. Hoeks et
al. [13] showed that CC estimators outperform the com-
monly used autocorrelators at measurements of low-flow
velocity. Because WSR is computed from the derivative
of velocity, it is highly sensitive to random errors. We
adopted a regularized CC estimation approach that mini-
mizes WSR variance without spatial averaging that would
reduce resolution.

Displacements (measured in pixels) are found by mini-
mizing two signal energy terms in the objective function:

d̂[m0, q] =

arg min
d

⎧⎨
⎩

∣∣∣∣∣1 − φ̂m0,q[d]

(φ̂m0,q)max

∣∣∣∣∣
2

+ ξ|dfit[m0, q] − d|2
⎫⎬
⎭ ,

(12)

where the cross-correlation function is:

φ̂m0,q[d] =
∑

m ∈ CCwindow

gd[m, k − 1, q] gd[m − d, k, q],

ξ is a constant, and m0 indicates the center sample of the
correlation window. The first term depends on the echo
data; it is based on the 1-D estimate φ̂ that yields min-
imally biased2 but noisy displacement estimates when a
small CC window is applied. The second term is based
on conventional color-flow estimates over the vessel lumen
to suppress noise from the data. Color-flow estimates are
accurate near the center of an artery at which blood ve-
locity is high. So we fit color-flow velocity estimates to a
polynomial, subject to the constraint V (r0) = 0, to find
dfit[m0, q]. By minimizing the difference between d and

2To estimate subsample displacements, either gd is upsampled be-
fore correlation or φ̂ is interpolated. The former does not bias dis-
placement estimates but the latter does.

dfit, weighted by the constant ξ, we reduce variance at
the risk of increasing bias should dfit values be erroneous.
In our study, ξ = 0.6.

Velocity estimates V̂ are computed from the unitless
displacement estimate d̂ using the standard pulsed Doppler
equation:

V̂ [m0, q] =
cT

2 cos θTprf
d̂[m0, q], (13)

where θ is the Doppler angle. This algorithm is applied
only to positions in the lumen near vessel walls. To obtain
accurate velocity estimates, most of the flowing scatterers
must stay within the ultrasound pulse during the measure-
ment time Tprf. Echo coherence is maintained by carefully
adjusting the PRF. And, WSR is calculated from the ra-
dial slope of (1) at the channel wall location. When the
vessel walls are nonstationary, a tracking method based
on a border detection technique and velocity distribution
[26] would be implemented to accurately locate the vessel
walls.

F. Evaluation Metrics

The WSR estimation performance is evaluated based
upon the bias and standard deviation of estimates. Rela-
tive percent bias is defined in terms of the ensemble mean
of the values estimated ̂WSR and predicted WSR:

Rbias =
E

{
̂WSR

}
− WSR

WSR
× 100, (14)

where WSR is given by (7). Relative percent standard de-
viation is found from:

Rstd =

(
E

{
̂WSR

2}
− E2

{
̂WSR

})1/2

WSR
× 100.

(15)

G. Phantom Experiments

An acoustic flow phantom was constructed by form-
ing a 5-mm diameter horizontal cylindrical channel in a
graphite-in-gelatin block. The scattering fluid was a water-
alcohol solution into which cornstarch particles were sus-
pended at a concentration 3% by weight. The scatterer
densities of the fluid and the surrounding gelatin were
similar to accommodate the limited voltage resolution of
the analog-to-digital converter (eight-bit) on our labora-
tory ultrasound system. And 60 cm of straight tubing
was connected to the inlet of the flow channel to gen-
erate steady laminar flow. The fluid had similar density
as water but with higher viscosity (density ∼ 1 g/cm3,
µ > 0.001 Pa·s). Reynold’s number (Re) of the flow at
room temperature was much smaller than the limit for
laminar flow (Re< 2000) for the 5-mm diameter flow chan-
nel with an average velocity of 100 mm/s [24]. There was a
small change in flow impedance at the connector in which
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Fig. 5. (a) 2-D (psfs log envelope of the RF echo) for the transducer
used in phantom experiments as a function of depth. (b) Axial psfs
near the radius of curvature and the corresponding frequency spec-
trum.

the tube joined the gelatin block. Nevertheless, we ob-
served that laminar flow was fully re-established provided
that measurements were made at least 30-mm downstream
from the connector. A perfusion pump supplied a known
steady flow. The Doppler angle was adjusted to 72◦, the
limit of the goniometer, the PRF was 1 kHz, and RF echo
sampling rate (1/T ) was 125 Msamples/s. We examined
steady flows in which the spatial peak velocities (WSRs)
were 100 mm/s (80 s−1) and 200 mm/s (160 s−1). The
values of VmaxTprf were 0.1 and 0.2, and thus consistent
with values used in simulation.

The lab-based imaging system consisted of a 10 MHz
(60% bandwidth), 30-mm diameter, f/1.5, circular aper-
ture, spherically focused transducer [27] that was mechan-
ically scanned. The depth of focus was very limited and
approximately equal to 7.2λ(f/No)2 = 2.5 mm. Fig. 5(a)
shows measured 2-D point spread functions imaged using
a fine line target phantom at multiple depths near the ra-
dius of curvature. The axial impulse response hs(t|x) and
corresponding frequency spectrum |H(u|x)| are plotted in
Fig. 5(b).

Four types of excitation pulses were applied: one-cycle
sinusoid, five-cycle sinusoidal bursts, eight-bit Optimal
code convolved with a 1.67 cycle base sequence, and a lin-
ear FM chirp. The bandwidths of the base pulse and chirp
were approximately equal to the bandwidth of the trans-
ducer. For further comparison, the duration of the chirp
was adjusted to provide a voltage energy equal to that of
the eight-bit Optimal code.

III. Results

A. Echo Simulations

Fig. 6 shows the WSR errors for uncoded pulses es-
timated from simulated data with different CC window

lengths. Values are plotted as a function of uncoded pulse
length in which pulse amplitudes are held constant. For
pulses longer than 0.5 mm, WSR biases increase and ran-
dom errors decrease as transmission pulses lengthen. When
the axial pulse length is less than 0.5 mm, the eSNR is so
low that it is impossible to obtain reliable displacement
estimates via cross correlation and, therefore, systematic
and random errors both increase significantly. The effect
is greater for shorter CC windows. The negative bias is
caused by the spatial averaging within the CC window
and WSR estimation window.

Fig. 7 shows WSR systemic and random errors for three
pulse types as a function of eSNR. Other parameters are
held constant. Coded pulses reduce WSR errors only for
eSNR < 30 dB. Biases converge when eSNR > 30 dB to a
value that depends on the particular CC window size and
pulse bandwidth selected.

For subsequent simulations, all at 10 MHz, we selected
eSNR = 25 dB as a reasonable representation of clini-
cal scanning conditions on carotid arteries. Other values
selected for comparison are a one-cycle broadband pulse
(∼0.1 µs), a five-cycle narrow band pulse (∼0.5 µs), a
2.85 µs chirp, and Optimal coded pulses ranging in du-
ration from 3 bits (0.45 µs) to 15 bits (2.25 µs). The am-
plitudes of all pulses were similar. The voltage waveform
energies of the FM chirp and eight-bit Optimal codes were
equal, although their lengths were not, i.e., 2.85 µs and
1.2 µs, respectively. The FM pulse, consisting of sinusoids,
has a lower energy density than the PM pulse, consisting of
square waves. Passing the voltage waveforms through the
transducer bandwidth produced acoustic pulses at which
the energy of the FM chirp exceeded that of the PM code
by 20%.

Fig. 8 shows that both types of coded pulses increase
eSNR; there is a 6.5 dB gain for the FM chirp pulse over
the broadband pulse. The eSNR increases monotonically
with PM code length as expected from (9). Longer dura-
tion uncoded pulses improve eSNR, but only with a signifi-
cant loss of bandwidth. The FM code preserves more band-
width than the PM codes. The bandwidth of the decoded
PM pulses increases with code length because Wiener fil-
ters in (8) approximate inverse filters at high eSNR with
their greater ability to recover bandwidth.

The most important performance metrics for our appli-
cation are the WSR errors, such as those shown in Fig. 9.
Coded pulse excitation effectively reduces Rbias by 9–22%
and Rstd by 31–45% compared to the results using un-
coded broadband pulses. The eight-bit Optimal code shows
the minimal relative errors (Rbias −4% and Rstd 9%) for
all the codes considered in this study. In these simulation
data, the CC window length was 0.4 mm, eSNR = 25 dB,
Vmax = 500 mm/s, and PRF = 5 kHz.

We also examined the effects of code length and lam-
inar flow WSR on WSR estimation errors (see Fig. 10).
The normal atheroprotective physiological value of time-
averaged WSS in carotid arteries is approximately 1.6 Pa
[25]. From (1), and assuming blood viscosity is 0.004 Pa·s,
WSR = 400 s−1. From (7), which is for laminar flow, and
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Fig. 6. WSR errors for various uncoded pulse lengths and CC window sizes.

Fig. 7. WSR errors for an uncoded broadband pulse, FM-coded pulse, and eight-bit Optimal PM-coded pulse versus eSNR. The CC window
length is 0.4 mm, and the true WSR was set at 400 s−1. The eSNR axis is computed for the uncoded broadband pulse.

Fig. 8. (Left) eSNR for a broadband, narrow band, FM-chirp and PM Optimal-coded pulses. (Right) Corresponding fractional bandwidths.

assuming a 3-mm lumen diameter, Vmax = 300 mm/s.
Conversely, WSS ≤ 0.4 Pa is considered atherogenic.
Other parameters being equal, WSR ≤ 100 s−1 and
Vmax ≤ 75 mm/s. The physiological effects on the ves-
sel wall of WSS between these values is an open question.
We measured WSR errors using simulated echoes under
flow conditions when the true WSR values ranged between
100–800 s−1, corresponding to a WSS range of 0.4–3.2 Pa.

Other parameters are the same as those in the simulations
described above. Fig. 10 shows that WSR errors increase
slowly with WSR, and that PM codes near eight bits min-
imize errors.

The PM codes longer than eight bits suffer larger WSR
errors at high flow velocities despite higher eSNR and
bandwidth. Errors increase because flow distorts the pulse
code for the received echoes leading to echo decorrelation
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Fig. 9. WSR errors estimated from simulated echo signals are shown in the forms of (left) Rbias and (right) Rstd.

Fig. 10. WSR errors: (left) Rbias and (right) Rstd with increasing flow as a function of code length.

Fig. 11. (Left) Echo correlation coefficient versus flow velocities normalized by the pulse-repetition frequency (PRF) = 5 kHz. (Right)
Correlation coefficients versus PM code length.

during displacement estimation, (12). We measured the
correlation coefficient between echoes gd(m, k − 1, q) and
gd(m, k, q) over a 0.4 mm CC window. The results are sum-
marized in Fig. 11. When there is no flow, VmaxTprf = 0,
decorrelation is due to noise, including quantization and
computational roundoff errors. As shown in Fig. 11 (left),
both FM and PM coded pulses show higher signal cor-

relation than that of the uncoded broadband pulse when
eSNR = 25 dB. The signals slowly decorrelate as flow ve-
locity increases (larger VmaxTprf). The same phenomenon
also can be observed in Fig. 11 (right). The eight-bit PM
code achieves maximum correlation under most of the sim-
ulated flow conditions in which VmaxTprf < 0.2. However,
the five bit Optimal code reaches the maximum correla-
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(a) (b) (c) (d)

Fig. 12. Envelope of the psfs for (a) broadband, (b) narrow band,
(c) chirp, and (d) eight-bit Optimal coded pulses after matched fil-
tering.

Fig. 13. (Right) B-mode image of a cross section of a flow phantom.
eSNR was measured at three phantom depths (left): A (centered on
focal length F = 45 mm), B (F + 2 mm), and C (F + 4 mm).

tion while flow velocity is high (VmaxTprf = 0.2). Shorter
codes are limited by noise, and longer codes are limited
by decorrelation from range side lobes that appear with
greater code distortion.

B. Phantom Experiments

1. Point Spread Functions: Fig. 12 shows psf images
measured from our lab system for the four pulse types:
broadband, narrow band, FM chirp, and eight-bit PM Op-
timal code. Amplitudes have been normalized and log com-
pressed to emphasize the presence of side lobes. Broad-
band pulses are most compact, having the highest band-
width and lowest amplitude side lobes. The chirp pulse we
adopted has more widely spread, higher amplitude range
lobes than the Optimal code. The lateral pulse dimension
is about the same for all pulses.

Matched filter decoding yields the highest eSNR at the
cost of smaller bandwidth and higher range lobes. Wiener
filters can balance the growth of range lobes and band-
width but yield lower eSNR. Lower eSNR is observed from
flow phantom measurements in Fig. 13 for both coded sig-
nals when using a Wiener filter instead of a matched filter.
Also, range lobes from the FM and PM pulses decrease
from −12.5 dB to −22 dB and −17 dB to −25 dB using
a Wiener filter in place of a matched filter. A 40% reduc-
tion in the main lobe width (improved lateral resolution)
for both coded pulses was observed for the Wiener filter
relative to the matched filter.

TABLE II
eSNR Measured from the Flow Phantom with Different

Acoustic Pulses and Decoding Methods.
1

Broad- Narrow- Chirp Optimal 8bit
band band MF WF MF WF

(A) 1.43 6.05 12.26 10.47 11.93 10.25
(B) 0.88 2.25 10.94 7.74 10.46 7.14
(C) 0.21 0.41 3.19 2.33 2.83 2.39

1Matched filters (MF) and Wiener filters (WF). Regions A, B, and
C correspond to those shown in Fig. 13.

TABLE III
WSR Errors Measured from Flow Phantom Experiments.

1

Broad- Narrow- Chirp Optimal 8bit
band band MF WF MF WF

(a) Rbias (%) −65 −42 −18 −12 −9 −7
Rstd (%) 58 34 10 14 8 13

(b) Rbias (%) −67 −43 −25 −17 −13 −11
Rstd (%) 57 36 15 20 10 16

1Maximum flow velocities were (a) 100 m/s and (b) 200 m/s.

2. Flow Experiment Results: Fig. 13 shows a B-mode
image across the phantom flow channel. The mid-point
depth of section A is at the focal length of the 10 MHz,
f/1.5 aperture. It is also near the anterior wall of the
echogenic flow channel. Sections B and C are in the far
field of the focused transducer. Table II shows estimates of
eSNR for the three sections. eSNR is greatest for all pulses
in the focal region, decreasing with depth, but more slowly
with coded pulses.

We think the reason that eSNR for the FM code is lower
than that for the PM code in simulation and higher in
the experiment is related to the dual characteristics of the
Wiener filter. The eSNR was set to 25 dB for the echo sim-
ulations and was less than 2 dB for the lab system echo
recordings. In low eSNR conditions, the Wiener filter re-
sponds like a matched filter, which enhances eSNR for the
FM chirp. However, in high eSNR conditions, the Wiener
filter responds more like an inverse filter, which is less effi-
cient at decoding chirp pulses and thus yields a diminished
eSNR.

3. WSR Errors: The WSR was measured experimen-
tally at the proximal wall along the center line of the flow
channel in a 2-mm range near the aperture focal length
(Fig. 14). Results using matched filters and Wiener fil-
ters to decoded echoes are shown. The corresponding WSR
error estimates are listed in Table III. Broadband pulses
generate the largest errors due to low eSNR. The improve-
ments using narrow band and coded pulses follow the same
trends observed in the simulations. Wiener filters outper-
formed matched filters by suppressing additional 2–8% in
WSR bias but at the cost of increased random error (4–
5%).
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Fig. 14. Shear rate measurements in flow phantom with steady laminar flow. Four pulses and two compression filters are examined at two
peak flow velocities (left) Vmax = 100 and (right) 200 mm/s. Optimal coded pulses decoded by Wiener filters provided the most accurate
shear rate estimates under both flow conditions.

IV. Discussion

Coded excitation improves eSNR without a significant
loss of spatial resolution. In a noise-limited situation,
specifically when eSNR < 30 dB, coded-pulse excitation
provides a significant reduction in velocity errors and,
therefore, WSR errors. Although the selection of trans-
mission bandwidth, carrier frequency, PRF, code type, and
code length depend on flow conditions, the criteria for se-
lecting these parameters is straightforward. Select codes
with the highest energy density per wavelength that are
relatively insensitive to code distortions caused by scat-
terer motion and echo noise. Binary PM codes satisfy these
criteria for our application. Then select a broadband trans-
ducer with a carrier frequency that gives a broadband-
pulse eSNR between 15 and 25 dB to maximize spatial
resolution within the high-performance eSNR range of the
code. Increase the code length to boost eSNR until WSR
errors are minimum and further increases in code length
decorrelate echoes. The eSNR of the decoded echoes must
be high to minimize the duration of the CC window that
dominates spatial resolution for the velocity estimator of
(12). These conditions are very different from those of typ-
ical color flow imaging; a narrow-band, color-flow acquisi-
tion followed by a broadband WSR acquisition, both syn-
chronous with the ECG waveform of the patient, provide
a more complete description of flow mechanics.

Random velocity errors were found to be further sup-
pressed using the regularized velocity estimator of (12).
In the simple, steady, laminar flow simulations and exper-
iments of the current study, the flow profile was a quadratic
function of lumenal radius, and the choice of dfit in (12)
was obvious. Physiological imaging is neither steady nor
laminar, although the color flow image is a good estimate
of flow near the lumen center. We propose to fit a polyno-
mial function to the color flow profile and assume nonslip
boundary conditions to estimate dfit in vivo. Sequential
color flow-WSR acquisitions make this possible.

V. Conclusions

Using the methods described at the beginning of Sec-
tion IV, we achieved significant reductions in WSS errors
for a simple flow geometry. The literature does not yet
show us how the errors in WSR (and therefore WSS) af-
fect descriptions of vascular EC function. So we cannot
predict how effective ultrasonic WSS measurements can
be at predicting EC function until it is known how much
of a change in WSS is required to alter the EC inflamma-
tory response, specifically, changes in adhesion molecule
expression. Nevertheless, our methods have the potential
to allow study of spatial and temporal variations in WSS
on EC function and plaque formation for physiological flow
geometries.
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