
TMI-2005-0370 1

Observer efficiency in discrimination tasks 
simulating malignant and benign breast lesions 

imaged with ultrasound 
Craig K. Abbey, Roger J. Zemp, Jie Liu, Karen K. Lindfors, and Michael F. Insana 

  
Abstract—We investigate and extend the ideal observer 

methodology developed by Smith and Wagner to detection and 
discrimination tasks related to breast sonography.  We provide a 
numerical approach for evaluating the ideal observer acting on 
radio-frequency (RF) frame data, which involves inversion of 
large nonstationary covariance matrices, and we describe a 
power-series approach to computing this inverse.  Considering a 
truncated power series suggests that the RF data be Wiener-
filtered before forming the final envelope image.  We have 
compared human performance for Wiener-filtered and 
conventional B-mode envelope images using psychophysical 
studies for 5 tasks related to breast cancer classification.  We find 
significant improvements in visual detection and discrimination 
efficiency in four of these five tasks.  We also use the Smith-
Wagner approach to distinguish between human and processing 
inefficiencies, and find that generally the principle limitation 
comes from the information lost in computing the final envelope 
image. 
 

Index Terms—Breast Sonography, ideal observer, image 
quality, Wiener filter 

I. INTRODUCTION 
HE objective approach to assessment of image quality 
utilizes task performance as the figure of merit for 

determining medical image quality [1].   In this way, all 
components of the imaging chain - from the formation of 
contrast in the body to display and reader effects - can be 
investigated for their influence on diagnostic accuracy.  For 
analyzing imaging systems, it can be illuminating to consider 
the performance of the Bayesian ideal observer [2] - often 
referred to simply as the ideal observer.  The ideal observer 

yields optimal task performance and therefore serves as a 
measure of the task-relevant information content of the data 
[3], which has direct application for system optimization.  In 
addition to identifying imaging devices or configurations that 
maximize diagnostic information, ideal observer analysis can 
be used to identify loss of information in components such as 
image processing, display and interpretation.  This is done by 
looking at a relative measure of task performance – referred to 
as efficiency - between the end user and the ideal observer on 
the raw acquired data.   The limitation of the ideal observer 
approach is that it requires complete statistical knowledge of 
the images under consideration, which is not feasible in a 
clinical environment.  However, ideal observer analysis is 
well suited for controlled simulation studies used to 
investigate new technologies and processing methodologies 
[4]. 
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In a series of highly regarded articles [5-7], Smith, Wagner, 
and coworkers described such an approach for ultrasonic 
imaging of backscattered acoustic energy. They used an ideal-
observer approach to rigorously show the role of speckle size 
(i.e. system resolution) on detectability of large low-contrast 
lesions in the presence of fully developed speckle.  Their 
approach introduced task-based assessment of image quality 
to the ultrasound community and has guided much subsequent 
investigation of ultrasonic image quality including this work. 

We have been investigating this approach to analyze 
ultrasonic signal processing before computation of the final 
envelope image [8-11].  Modern ultrasound systems have the 
ability to digitize and store radio-frequency (RF) or 
demodulated signals [12].  This allows for increased flexibility 
in processing the image data before computing the final 
envelope image.  These systems also operate at higher 
frequencies yielding greater bandwidth for possible 
enhancement. In addition, there is currently great interest in 
coded excitation that requires “decoding” at the RF level [13].  
Like Smith and Wagner [5,6], we assume Gaussian 
distributions for acoustic scattering in tissue, which implies 
fully developed speckle, and we assume a isoplanatic region 
leading to a shift-invariant focused pulse.  However, we 
explicitly include Gaussian electronic noise in the signal 
acquisition stage, and we investigate discrimination tasks in 
addition to low-contrast detection.   

Our rationale for considering discrimination tasks comes 
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Fig. 1.  A graphical model of ultrasonic signal processing used in this work.  The top row shows the formation of a standard B-Mode image including 
the object scattering function, the acquired radio-frequency (RF) frame, demodulated In-Phase (I) and Quadrature (Q) signals, and the final envelope 
image.  Images of the demodulated signals and the final envelope images are reduced in size to indicate downsampling during demodulation.  In this 
work we investigate the effect of implementing a Weiner-filter on the radio-frequency frame data.  After Wiener filtering, the signal is demodulated and 
an envelope image is computed.
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Fig. 1.  A graphical model of ultrasonic signal processing used in this work.  The top row shows the formation of a standard B-Mode image including 
the object scattering function, the acquired radio-frequency (RF) frame, demodulated In-Phase (I) and Quadrature (Q) signals, and the final envelope 
image.  Images of the demodulated signals and the final envelope images are reduced in size to indicate downsampling during demodulation.  In this 
work we investigate the effect of implementing a Weiner-filter on the radio-frequency frame data.  After Wiener filtering, the signal is demodulated and 
an envelope image is computed.
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from clinical applications of ultrasonic imaging to 
discriminate malignant breast lesions from benign [14].  
Sonography is generally used as an adjunct to mammography 
in women with suspicious findings [15], where it has been 
found to increase sensitivity (observed increases from 83% to 
91% [16] and from 74% to 97% [17]) without significantly 
reduced specificity.  Sonography has also been suggested as a 
screening modality in women with mammographically dense 
breasts [17-19] where observed sensitivity is approximately 
75% [17]. 

An advantage of working in the sampled RF domain is that 
the signal is well modeled as a noisy linear transformation of 
the object scattering function, and thus by our assumptions 
can be described by correlated multivariate Gaussian 
distributions. The ideal observer decision variable in simple 
detection and discrimination tasks is therefore given by a 
quadratic function of the RF data that involve the inverse of 
RF covariance matrices [20]. Although the ideal observer’s 
decision variable is well defined, evaluating the ideal observer 
remains a computational challenge due to the necessity of 
inverting large nonstationary covariance matrices.   

We have been able to successfully accomplish the 
necessary covariance-matrix inversion for detection tasks 
through the use of a power series expansion [8].  Here we 
derive and extend that approach to discrimination tasks 

designed to simulate the differentiation of malignant from 
benign breast tissue.  We also show how truncating the power 
series after the first iteration is equivalent to application of a 
Wiener filter to the RF frame data before computing an 
envelope image. A number of researchers have addressed the 
possibility of improving ultrasonic imaging through 
deconvolution of the RF signal before computing the B-mode 
envelope [21,22].  Our approach suggests the Wiener filter 
instead of a more standard inverse filter, and places this filter 
in the context of an optimal decision variable. 

In this work, we evaluate Wiener-filtering and standard B-
mode processing for a panel of five tasks related to detecting 
and discriminating malignant from benign breast tissue.  We 
investigate ideal observer performance on these tasks through 
Monte-Carlo studies, and we investigate human observers 
through psychophysical studies.  Comparing the efficiency of 
human-observer performance in B-mode and Wiener-filtered 
envelope images allows us to quantify improvements in task 
performance relative to the amount of diagnostic information 
available in the RF data.  As shown below, human observer 
efficiency with respect to the ideal observer varies 
considerably across tasks.  It is therefore of interest to know if 
this reflects information lost in the computation of an 
envelope image or if it reflects limitations in human-
observers’ ability to extract information from the envelope 
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image.  To examine this question, we use a model observer 
based on the Smith-Wagner approach to analyze the envelope 
images.  By comparing the efficiency of the Smith-Wagner 
observers to the efficiency of the human observers we gain 
insight into where diagnostic information is lost in the 
transformation from an RF frame to the final envelope image.  

II. THEORY 
In this section we consider a model of image formation in 

ultrasound that is based on the idea of linear operators acting 
on Gaussian stochastic processes.  A graphical depiction of 
this model is given in Figure 1.  Since the goal is to analyze 
two class discrimination tasks, we develop in this model with 
different variance profiles depending on whether malignant or 
benign tissue is present. 

A. System modeling 
We begin by modeling scattering properties of tissue as a 

zero-mean Gaussian stochastic process that gives rise to 
incoherent scattering [23].  Samples from a 2-D scattering 
functions representing the object being imaged can be 
arranged into a column vector f by lexicographical reordering. 
In this work we will not consider specular reflections, but we 
note that this phenomenon could be included through the use 
of a nonzero mean object. 

Let H1 indicate the hypothesis that f represents scattering 
from a benign focal lesion, and H2 be the hypothesis that f is 
from a malignant lesion.  We assume that the spatial 
distribution of scattering from either type of tissue can be 
modeled using multivariate normal (MVN) distributions, and 
that the distributions have a common scattering variance, 
σ 2obj, that characterizes the overall magnitude of scattering in 
the tissue.  However, we allow each hypothesis a unique 
pattern of departure from this variance, encoded in diagonal 
deviation matrices S1 and S2. The distribution of f under each 
hypothesis is thus given by 

  (1) 
( )( )
( )( )

1 obj 1

2 obj 2

H :  MVN ,

H :  MVN , .

σ

σ

+

+

2

2

f 0 I S

f 0 I S

∼

∼

The diagonal elements of S1 and S2 can be positive or 
negative, but they must be greater than -1 to preserve 
positivity of the variance.  A number of choices for these two 
matrices can be found below in Figure 2. 

The next step of the modeling process, the creation of 
radio-frequency (RF) data from the scattering object, can be 
implemented as a noisy linear transformation of the scattering 
object 

 ,= +g Hf n  (2) 
where g is the vector of RF frame data, H is the system matrix 
characterizing the transformation, and n is object independent 
system noise that arises in the detection process.  The system 
noise is assumed to be a zero-mean Gaussian white-noise 
process with variance σ 2n.  The resulting statistical model for 
the RF frame is given by 

  (3) 
( )
( )

1

2 2

H :  MVN ,

H :  MVN , ,

g 0 Σ

g 0 Σ

∼

∼
1

where  
 ( ) 2

obj ,   1, 2.t
i i n iσ σ= + + =2Σ H I S H I  (4) 

Nondiagonal and nonstationary covariance matrices under the 
two hypotheses arise from the propagation of nonstationary 
variance in Equation (1) through the noisy linear 
transformation in Equation (2). All information about the 
object and imaging system is contained in . iΣ

Our analysis of the ideal observer is tailored to RF frames 
of echo data.  However, to complete the process for the 
purpose of creating an image, the final step of image 
formation is demodulation and envelope computation [24].  
The demodulation step can be implemented by multiplying g 
with a complex exponential along each axial scan line, 
followed by low pass filtering and computation of the 
magnitude.  For example, an envelope image is derived from a 
frame of RF data, g, by the computation 

 =b LMg ,  (5) 
where M is a diagonal “mixing” transform that implements 
multiplication with a complex exponential tuned to the carrier 
frequency of the pulse, and L is a lowpass filtering matrix that 
removes undesirable harmonic frequencies, and yields in-
phase (I) and quadrature (Q) signals as the real and imaginary 
parts of a complex signal.  The magnitude of this signal is 
computed on an element-by-element basis by the | | brackets.  
Computing the echo envelope is non-linear and, as a result, 
makes the full multivariate distribution of the resulting 
envelope image difficult to analyze without imposing 
assumptions [5,6].  Downsampling the echo data without 
aliasing will not alter the information content of the envelope 
image, and therefore is ignored in our analysis. 

B. Ideal observer 
The ideal observer test statistic for binary discrimination 

tasks is conventionally defined by the ratio of the probability 
density function (PDF) for H2 to that of H1.  Equivalently, one 
can use the logarithm of this and ignore terms unrelated to the 
data.  For the Gaussian distributions of the form given in 
Equation (3), the resulting log-likelihood-ratio decision 
variable is given by 

 ( ) ( )
( ) (2 1 1

1 2
1

1Ln .
2

tp
p

λ − −⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

g
g g Σ Σ g

g
)−  (6) 

A high value for this variable indicates greater likelihood for 
H2 while a low value indicates greater likelihood for H1.  
Because the object contrast only produces differences in the 
covariance matrix of g under the two hypotheses, the decision 
variable is quadratic in the echo data [20, 25].  As described 
below, this test statistic can be used in Monte-Carlo studies to 
evaluate ideal observer performance in binary discrimination 
tasks.  However, for this approach to be implemented, a 
computational issue that must be addressed in Equation 6 is 
efficient computation of matrix vector products involving 1

i
−Σ  
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which are generally too large to be computed through 
straightforward numerical inversion. 

C. Power series inversion 
To resolve the matrix inversion problem, we propose a 

power-series approach to computing matrix-vector products 
with inverse covariance matrices.  Our method relies on the 
decomposition of the image covariance matrices into 
stationary and nonstationary components.  This requires the 
additional assumption that the impulse response of the 
imaging system (i.e., rows of the system matrix, H) be shift 
invariant.  Consequently H is a circulant matrix, the product 
Hf is a discrete convolution, and hence the approach is limited 
to isoplanatic regions. The assumption of shift-invariance 
allows us to diagonalize H by a Fourier transform, 

 , (7) 1−=H F TF
where F is the 2-D forward Finite Fourier-Transform matrix, 
and T is a diagonal matrix whose elements are the eigenvalues 
of H and also the Fourier transform of the system impulse 
response [25,26]. We use a unitary implementation of the 
Finite Fourier Transform to avoid keeping track of scaling 
constants; hence the inverse Fourier transform is also the 
adjoint of the forward transform,   [25]. 1− =F F†

i

0

The power series approach to inversion of a matrix is 
incorporated in the relationship [27] 

                   ( ) 1

0
,k

k

∞−

=
− = ∑I A A

which holds if the eigenvalues of A are between –1 and 1 (this 
form is reminiscent of the limit of a geometric series).   In 
terms of the RF covariance matrices, we can write each 
covariance matrix as  

        (8) 
2 2 2
obj obj

0 ,

t t
i n

i

σ σ σ= + +

= + ∆

Σ HH I HS H

Σ Σ
where Σ0 is the stationary component comprised of the first 
two terms on the right side of line 1, and ∆Σi is the 
nonstationary component that is dependent on the variance 
profile, Si.  The stationary component happens to be common 
to both hypotheses and is therefore independent of i.  Similar 
to Equation 7, the stationary assumption allows us to 
diagonalize Σ0 by a Fourier transform, 

 , (9) 1
0

−=Σ F N F
where the diagonal matrix, N0, is the power spectrum 
corresponding to Σ0.  The diagonal elements of N0 are given 
by 

 [ ] [ ] 22 2
0 obj nii ii

σ σ= +N T , 

where T is the transfer function of H as defined in Equation 7. 
The decomposition in Equation 8 allows us to write the 

covariance matrix in a form amenable to power series 
inversion,  

  ( )1/ 2 1/ 2 1/ 2 1/ 2
0 0 0 .i i

− −= + ∆Σ Σ I Σ Σ Σ Σ0

0
−

1j

The resulting form for the inverse of the covariance matrix is 
given by  

   (10) 
( )

( )

11 1/ 2 1/ 2 1/ 2 1/ 2
0 0 0 0

1/ 2 1/ 2 1/ 2 1/ 2
0 0 0

0

.

i i

k

i
k

−− − − − −

∞
− − −

=

= + ∆

⎛ ⎞= − ∆⎜ ⎟
⎝ ⎠
∑

Σ Σ I Σ Σ Σ Σ

Σ Σ Σ Σ Σ

Note that the stationary components of this expression, the 
 factors, can be computed readily using the Fourier 

methods described above.  They consist of a Fourier 
Transform, division by the square-root of the RF power 
spectrum, N0, and an inverse Fourier transform.  As we 
describe below, Equation 10 can be implemented iteratively to 
get the quadratic forms in Equation 6 presuming that 
conditions for convergence have been met. 

1/ 2
0
−Σ

D. Iterative implementation of the power series 
The power series in Equation 10 can be implemented more 

efficiently through an iterative procedure.  In the Monte-Carlo 
studies described below, we will need to compute quadratic 
products of the form , where the vector g is a frame of 
(simulated) RF data lexicographically indexed as a vector.  
Assuming convergence of the power series, we can 
approximate this product with the first K elements of the 
summation in Equation 10.  The iteration begins by 
initializing two vectors, , and then iterating  

1t
i
−g Σ g

1/ 2
0 0 0

−= =u v Σ g

   (11) 
1/ 2 1/ 2

0 0

1

,
,

j i

j j j

− −
−

−

= − ∆

= +

u Σ Σ Σ u
v v u

for j = 1 to K.  The quadratic form is then approximated by 
the inner product 0

t
Kv v .  The proof of this algorithm is given 

in the Appendix. 

E. Wiener filter 
The Wiener filter in imaging is typically derived from a 

consideration of blurring and noise effects on images [26, 28].  
We will show how the filter emerges from the quadratic form 
in Equation 6 by truncating the power series inversion in 
Equation 10. 

If we truncate the power series expansion at 1k = , we 
obtain the following approximation for the difference in 
inverse covariance matrices, 

 ( )1 1 1
1 2 0 1 2 0 .1− − − −− ≈ ∆ − ∆Σ Σ Σ Σ Σ Σ        

Substituting this into Equation 6 yields an approximation to 
the ideal-observer test statistic of  

 ( ) ( )
2
obj 1 1

0 2 1 0 .
2

Tσ
λ − −≈ −g g Σ H S S H Σ gT

1

   (12) 

Terms of the form  are recognizable as a 
Wiener-filtered version of the RF frame [26].  Equation 12 
suggests that Wiener filtering in the RF domain before 
computing an envelope may capture important components of 
the ideal observer test statistic.  Demodulation and envelope 
computation, performed after Wiener-filtering, can be used to 
compute an image as described in Equation 5.  Appearance of  

2
obj 0

Tσ −H Σ g
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Fig. 2.  Variance profiles of “Malignant” and “Benign” scattering objects the 5 tasks.  The third row is the difference in the variance profiles.  In Task 1, 
the lesion is 3mm in diameter.  In tasks 2-5 the lesion is approximately 5mm in diameter.
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Fig. 2.  Variance profiles of “Malignant” and “Benign” scattering objects the 5 tasks.  The third row is the difference in the variance profiles.  In Task 1, 
the lesion is 3mm in diameter.  In tasks 2-5 the lesion is approximately 5mm in diameter.
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the Weiner filter in Equation 12 raises the question: Can 
Wiener filtering of RF echo data improve our efficiency for 
visual detection and discrimination? 

F. Smith-Wagner envelope observers 
As we have described in the introduction, Smith, Wagner 

and co-workers [5-7] have analyzed low-contrast lesion 
detectability for medical ultrasonic imaging using envelope 
image data.  The basis of the Smith-Wagner approach is the 
notion of an observer decision variable that is computed as a 
weighted sum of the envelope intensity,  

 ,   (13) ( ) 2 2
SW

t
i i

i
a bλ = =∑b a b

where the ai are elements of a vector of weights, and the bi are 
samples of the echo envelope as in Equation 5. Samples are 
squared on an element-by-element basis to obtain the 
envelope intensity at each point. 

Smith and Wagner argued [6] from the basis of laser 
speckle statistics described by Goodman [5, 29] that Equation 
13 can closely approximate the decision variable of the ideal 
observer acting on envelope images for the task of detecting 
of a focal deviation in scattering intensity.  To make this 
argument, they assumed the contrast within the focal deviation 
(i.e. the lesion) was constant and small, so that statistical 
properties of the envelope data were approximately stationary.  
Also, they assumed the lesion area was relatively large, at 
least 10 times the speckle correlation area, because their 
analysis was for contrast limited rather than spatial resolution 

limited detection tasks.  In this case, the elements of a are 
constant in the focal region and zero outside of this region.  In 
terms of the scattering deviation matrices defined in Equation 
1, the Smith-Wagner decision variable can be written as  

 ( ) ( )2 1
t

SWλ = −b b S S b .   (14) 
We will employ this decision variable as an approximation to 
the ideal observer acting on envelope images, including 
envelope images derived from Wiener-filtered RF frames.  
This application requires an additional assumptions since the 
approach was derived for low-contrast large area detection 
tasks, and here we are applying it, in some cases, to small-area 
high-contrast discrimination tasks.  We discuss the 
implications of this below in Section IV. 

III. METHODS. 
Comparing the performance of the ideal observer on RF 

data with the Smith-Wagner result for envelope-detected data 
allows us to test the notion that computation of a B-mode 
envelope image may result in a significant loss of diagnostic 
information, and that at least some of that information may be 
retained by first Wiener filtering the RF data.  To this end, we 
have designed a panel of visual tasks related to detecting and 
discriminating malignant and benign tissue in breast lesions.  
We then simulate the acquisition of RF data using parameters 
derived from a clinical ultrasound scanner. This simulation 
procedure is used to assess the performance of the RF ideal 
observer, of Smith-Wagner approximations to envelope-image 
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ideal observers for B-mode and Wiener-filtered envelope 
images, and for trained human observers. 

Fig. 3.  Pulse profile used to generate RF data.  
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A. Experiments 
We have proposed five detection tasks based on candidate 

features that trained experts are likely to look for in the 
process of detecting and discriminating malignant from 
benign breast lesions with ultrasound [14].  The specific 
scattering objects used in the simulation are defined by their 
variance profiles and are classified as either “malignant” or 
“benign” as shown in Figure 2.  We also display the 
difference between the two variance profiles since this defines 
the contrast between the two hypotheses, and is a critical 
component of the test statistic in Equation 12.  The five tasks 
considered represent detection of a hypoechoic lesion (Task 
1), discrimination of an elongated eccentric lesion from a 
circular lesion (Task 2), discrimination of a soft, poorly 
defined boundary from a well-circumscribed lesion (Task 3), 
discriminating boundary irregularities from a smooth 
boundary (Task 4), and discriminating hypoechoic from 
anechoic lesion interiors (Task 5). 

The difficulty of each task is controlled through a parameter 
that governs the difference between the variance maps for H1 
and H2.  Increasing this parameter in each case makes the task 
easier to perform.  For Task 1, this controlling parameter is 
the contrast of the lesion [30].  For Task 2, it is the 
eccentricity of the lesion. For Task 3, it is the width of a 
Gaussian blurring kernel that smoothes the lesion variance 
map to give it a soft boundary.  In Task 4 the controlling 
parameter is the length that irregularities deviate from a 
circular boundary.  Task 5 is parameterized by the difference 
in the interior contrast of the lesions. 

The parameters relate the variance map to physical 
properties of a lesion, but they are unwieldy for comparisons 
between tasks.  For example, it is not clear how the 
eccentricity used in Task 2 relates to interior scattering 
contrast in Task 5.  To place all tasks on a common scale, we 
define an object contrast factor as the integrated absolute 
value of the variance deviation profiles,  

 [ ]2 1 ii
i

C x= − ∆∑ S S y∆ ,   (15) 

where x∆  and  are RF sampling intervals in the axial and 
lateral directions.  Recall from Equation 1 that the deviation 
matrices are diagonal, and hence the sum need only be 
computed over the diagonal elements. The parameters 
described above are used to generate two object variance 
profiles for a given experiment, and from these the object 
contrast factor of the experiment is defined. We report ideal-
observer performance values as a function of the object 
contrast factor defined in Equation 15.  

y∆

 

B. Echo signal model 
 The experiments described below were based on images 

generated using a Sonoline Elegra Ultrasound System with a 
7 MHz linear array (Siemens Medical Solutions, Mountain 

View, CA).  The system provides baseband in-phase and 
quadrature echo data with a 12 MHz bandwidth that is 
sampled at 36 Msamples/s.  These signals are down sampled 
by a factor of 2.5 before file transfer and then up sampled as 
needed for analysis.  We modeled the point spread function of 
the system after this experimental system to determine the H 
matrix introduced in Equation 2.  The transmission carrier 
frequency was 7.2 MHz.  The Gabor-function pulse was 
simulated with a percent bandwidth of 51.7% (full width at 
half max) and a peak signal power to noise power echo SNR 
of 45.5dB. The pulse parameters were derived from previous 
studies using a line reflector in an agar block [31]. The 2-D 
simulated pulse profile shown in Figure 3 can be thought of as 
one row of the H matrix.   

 Variance profiles from the top two rows of Figure 2 were 
used to generate realizations of the random object scattering 
vector, f (left side of Figure 1) via pseudo-random number 
sequences and Equation 1.  Noisy RF echo signals were then 
found by applying Equation 2.  Examples of B-mode and 
Wiener filtered images generated with this procedure can be 
seen in Figure 4.  The speckle texture of the B-mode images is 
qualitatively similar to what is found in breast sonograms.  

Fig. 4. Examples of noisy B-mode and Wiener filtered images 
for Task 3 (at exaggerated contrast for display clarity).
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Fig. 4. Examples of noisy B-mode and Wiener filtered images 
for Task 3 (at exaggerated contrast for display clarity).
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However, at this stage, the model does not allow for many of 
the inhomogeneities of normal breast tissue such as layers of 
fatty tissue, ducts, Cooper’s ligaments, and fibroglandular 
tissue [14].  This makes the region outside the lesion more 
uniform than what is found in clinical sonograms.  The lesion 
itself is also more regular (round) than clinical lesions, 
reflecting the fact that the model does not at this stage 
accommodate variable lesion shape.  

C. Assessment of observer performance 
For each of the five visual tasks shown in Figure 2, we have 

evaluated human observer performance for standard B-mode 
and Wiener-filtered envelope images through psychophysical 
studies.  We compare these to Monte-Carlo studies of the 
ideal observer acting on RF data and Smith-Wagner 
approximations to the ideal observer acting on envelope 
images.   

We assessed human-observer detection and discrimination 
performance through two-alternative forced-choice (2AFC) 
experiments [32] in which a stimulus generated under 
hypothesis H1 and an independent stimulus generated under 
hypothesis H2 are presented to the observer, and the 
observer’s task is to identify the stimulus generated from H2, 
the hypothesis of malignant tissue.  For the ideal observer, the 
stimuli were sampled RF data.  For human observer studies 
and for the Smith-Wagner model observers, the stimuli were 
B-mode and Wiener-filtered envelope images. 

For the ideal observer, 6400 pairs of RF echo frames were 
generated for each task.  If we let g1,i be the RF frame from H1 
in the ith trial and  g2,i be the RF frame from H2, then the trial 
score,  oi , is given by 

 ,          ( ) ( )( )2, 1,stepi io λ λ= −g g i

where the step function (also referred to as a Heaviside 
function) assumes a value of 1 for positive arguments and zero 
for negative.  Hence, the score is 1 if the observer response is 
greater for g2,i than g1,i.  This corresponds to the observer 
correctly choosing the image generated under H2. 

With human observers, we obtain the score in each trial 
directly by showing malignant and benign images side by side 
randomizing which side the images appear on so that they are 
independent from trial to trial.  We record each observer’s 
choice of the image representing “malignancy” (H2).  When 
an observer correctly identifies the image from the malignant 
class, the score for that observer in that trial is 1. Trials in 
which the observer misidentifies a benign image as malignant 
result in a score of 0. 

The proportion of correct responses, PC, is defined as the 
expectation of the trial score.  Under general assumptions, PC 
is equivalent to area under the ROC curve (AUC) and is 
monotonically related to the detectability index [25], 

 ( ) ( )1 12 2erf 2AUCA Cd P− −= Φ = −1 ,         (16) 

where Φ-1 is the inverse cumulative normal function and erf -1 
is the inverse error function.  Proportion correct is estimated 
from the average score over all trials in an experiment. 

To compute the efficiency of a human observer with respect 

to the ideal observer, the object contrast factor in each task is 
adjusted to handicap the ideal observer performance until it 
matches that of the human observer [33].  If we define CH as 
the object contrast factor for the human-observer study, and CI 
as the parameter setting that produces equivalent performance 
in the ideal observer (dA-Human = dA-Ideal), then the observer 
efficiency with respect to the ideal observer is given by 

 
2

100% I

H

C
C

η
⎛ ⎞

= ×⎜ ⎟
⎝ ⎠

.                   (17) 

Efficiency can also be computed as the square of the 
detectability index of the human observer divided by that of 
the ideal observer at the same contrast as the human observer 
study [33].  However, the detectability index of the ideal 
observer at the object contrasts used for the psychophysical 
experiments is usually so high that it is very difficult to 
accurately estimate by the 2AFC procedure.  Hence we favor 
the efficiency computation of Equation 17. 

D. Psychophysical studies 
Human-observer performance was assessed through 2AFC 

psychophysical studies.  A total of 6 observers participated in 
a total of 10 studies investigating each of the 5 tasks with both 
B-mode and Wiener-filtered data.  Two of the observers are 
authors of this work (CA and MI) and the remaining four 
observers consisted of graduate students, fellows, and 
researchers not directly related to the project.  Simple tasks 
with tightly controlled stimuli of the sort reported here do not 
require extensive medical experience to perform, and 
nonclinical observers (trained for specific tasks) appear to 
perform equally well in such cases as those with clinical 
training [34,35]. 

Pilot studies on independent sets of images were used to 
find object contrast factors such that human observer 
performance in the B-mode images would be approximately 
80% correct.  This level of performance yields a relatively low 
coefficient of variation in 2AFC studies [36], and leaves a 
reasonable range for improved performance in the Wiener-
filtered envelope images.  Since the primary goal of the 
psychophysical studies was to investigate the effect of 
Wiener-filtering the RF data before computing an envelope 
image, in each task, B-mode and Weiner-filtered images were 
generated from the same RF frame data, thereby controlling 
for case variability [37].  All observers scored both the B-
mode and Wiener-filtered studies, to control for observer 
effects.  The order of the tasks was randomized for each 
observer, and within each task the order of the Wiener-filtered 
study and the B-mode study was also randomized to reduce 
any order effects.   

Before each task began, observers completed 100 trials of 
training that began with 10 trials at very high contrast, through 
two sets of 20 trials at progressively harder parameter settings 
and finally 50 trials at the parameter setting of the actual 
study.  Training responses were not used to assess observer 
performance.  Immediately after training, the observers scored 
400 2AFC trials that determined their observed performance 
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Average percent correct across observers in each condition is given 
along with the p-value of a paired comparison t-test (df = 5, 2-tailed) 
between B-Mode and Weiner filtered images.
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in the task.  The studies were performed in a darkened room 
on a calibrated monochrome monitor (Image Systems, 
Minnetonka, MN) using a perceptually linearized [38] lookup 
table over a luminance range of 0.5 to 150Cd/m2.  The 
monitor pixel size was .3mm.  Viewing distance was not 
controlled, but generally observers maintained a comfortable 
viewing distance of approximately 40-50cm.  At 40cm 
viewing distance, the 5mm lesion size in tasks 2-5 subtends a 
visual angle of 1.7º. 

IV. RESULTS AND DISCUSSION 

A. Human observer performance 
Figure 5 charts the performance of the human observers as 

determined in the psychophysical studies.  The chart gives 
proportion correct averaged across the six observers in each of 
the five tasks for B-mode and Wiener-filtered envelope 
images.  The average values in each condition are given in 
Table 1, along with a paired-comparisons t-test between B-
mode and Wiener-filtered images for each task.  Pilot studies 
were used in to determine the parameter settings needed to get 
approximately 80% correct in the B-mode image experiments.   

The B-mode average performance values in Table 1 show 
that the pilot studies appear to have been reasonably accurate, 
with the largest deviation from 80% correct coming in Task 1, 
where the average performance is off by 5.4 percentage 
points.  Table 1 also shows a substantial increase in 
performance with the Wiener-filtered images for Tasks 1-4.  
Tasks 2 and 3 increase by approximately 10 percentage points 
while tasks 1 and 4 increase by as much as 16 percentage 
points.  The paired-comparison t-test shows that these 
increases are significant at the α = 0.01 level.  It is also worth 
noting that every observer improved performance in each of 
these tasks on the Wiener-filtered images.   

But notably, performance went down in Task 5 for Wiener-
filtered images relative to the B-mode images.  Table 1 shows 

that the significance of this difference is slightly greater than 
the α = 0.01 level. 
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Fig. 5.  Human observer performance for B-mode and Weiner-filtered 
envelope images.  Proportion correct in 2AFC psychophysical exp-
eriments are given for each of the five tasks.  Error bars represent 95%
confidence intervals about the mean across the six observers.
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Fig. 5.  Human observer performance for B-mode and Weiner-filtered 
envelope images.  Proportion correct in 2AFC psychophysical exp-
eriments are given for each of the five tasks.  Error bars represent 95%
confidence intervals about the mean across the six observers.

B. Ideal observer performance 
The results of the Monte-Carlo studies of ideal observer 

performance are plotted in Figure 6.  The plots in Figure 6A-E 
give performance in terms of the detectability index (dA as 
defined in Equation 11) as a function of object contrast.  
Recall from Equation 6 that the ideal observer acts on RF 
frames.  Shown for comparison are performance curves for the 
Smith-Wagner observer, Equation 14, acting on the B-mode 
and Wiener-filtered envelope images. Note that in Task 1, 
performance of the ideal observer and the Smith-Wagner 
observer for Wiener-filtered envelope images were identical 
(i.e. the power series has effectively converged after 1 
iteration), and so only the ideal observer plot is given.  For 
reference, the average detectability of the human observers is 
also given at the object contrast used in the experiments.  In 
Figure 6A, we notice that dA for the Smith-Wagner 
approximation in task 1 is approximately proportional to 
contrast as they predicted for low-contrast lesion detection [6].  
The ideal observer’s performance is also linear with contrast, 
yet the slope is greater suggesting that RF data provide more 
task 1-relevant information. 

The ideal observer performance is plotted after 10 iterations 
of the power series for inversion of the nonstationary 
covariance matrix.  At 10 iterations, the detectability index 
was improving by less than 1-2% per iteration.  Running on a 
PC (Processor speed 866MHz, 500Mb RAM), each plot took 
8-10 hours of CPU time to generate. 

In Tasks 1, 2, 3, and 5, the detectability index of the ideal 
observer is seen to be reasonably linear as a function of object 
contrast.  This would indicate that efficiency with respect to 
the ideal observer as defined in Equation 17 is equivalent to 
efficiency computed as a ratio of dA values squared.  
However, in Task 4, the ideal observer performance curve 
appears to have a decelerating nonlinearity for object contrasts 
near zero. In this task, the efficiency computed from the ratio 
of detectability index values at equal contrasts will not 
necessarily equal the efficiency computed from the ratio of 
object contrasts at equal detectability.  

Figure 6F gives shows graphically how the efficiency with 
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Fig. 6.  The detectability index dA is plotted as a function of object contrast for the ideal observer derived from Monte-Carlo studies in parts A-E. The 
legend in Task 2 applies to all plots.  Also plotted are the Smith-Wagner approximations for B-Mode and Weiner filtered (WF) envelope images, as well 
as average human observer performance (error bars represent +/- 1 standard deviation across observers).  Part F shows how visual detection efficiency is 
computed.  We find the threshold contrast, CI, that gives the same detectability index for the Ideal observer as the human observers at contrast CH.  
Contrast values are combined to com-pute efficiency in Equation 17.  
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respect to the ideal observer in Equation 17 is calculated.  The 
intersection of a horizontal line at the level of the human 
observer performance with the ideal observer curve is used to 
determine the contrast needed for the ideal observer to achieve 
equivalent performance.  The efficiency is then given as the 
ratio of this contrast to that of the human observer data 
squared.  This approach can also be used to determine the 
relative efficiency with respect to the Smith-Wagner observer.   

C. Observer Efficiency 
Human observer efficiency in the visual tasks is plotted in 

Figure 7A.  Note that the relatively uniform proportion correct 
values for B-mode images (Figure 5) does not result in 
uniform efficiency.  Here we see approximately two orders of 
magnitude difference in efficiency going from the highest 
efficiency B-mode task (Task 1) to the lowest (Task 4).  
Efficiency for the Wiener filtered data is substantially higher 
for Tasks 1-4 by factors ranging from 2.5 to more than 20.  
Task 5 exhibits approximately a factor of 2 drop in efficiency.  
Efficiency for the Wiener filtered images ranges from 44% in 
Task 1 to as low as 0.36% in Task 5.  The relatively high 
detection efficiency of human observer in Task 1 reproduces 
the results of earlier studies utilizing low-contrast lesion 

detection tasks.  For example, Insana and Hall [30] found 
observer detection efficiencies near 60% and Abbey et al [8] 
found efficiencies between 40% and 60%. 

Given the large range of observer efficiency across the 
various tasks and the substantial differences between B-mode 
and Wiener-filtered envelope images, it is of interest to 
understand the sources of inefficiency in our human observer 
data.  From the perspective of information transfer, we would 
like to know where the diagnostic information being used by 
the ideal observer is lost.  Is the information being lost in the 
computation of an envelope image, or is the information lost 
because of limitations in the human eye-brain system?  We 
use the Smith-Wagner test statistic defined in Equation 14 to 
approximate ideal performance for envelope images, with and 
without Wiener filtering, as a means to gain insight into this 
issue.   

Consider for the moment task performance using envelope 
images.  Let ηH|SW be the relative efficiency of the human 
observer with respect to the Smith-Wagner approximation.  
This relative efficiency is found as described in Figure 6F, 
except that the performance curve of the Smith-Wagner 
observer is used instead of the RF ideal observer.  Now let 
ηSW be the efficiency of the Smith-Wagner observer with 
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respect to the ideal observer acting on RF frame data.  We can 
decompose the human observer efficiency into the product, 

 H SW H|SWη η η= .                   (18) 

The ηSW term measures the information lost in creating a 
envelope image while the ηH|SW term measures the information 
lost by the human observer.  This same process can be used 
with the Wiener-filtered envelope images.  Thus we can 
disambiguate the information lost in these two steps.  
However, it should be noted that this analysis relies on the 
assumption that the Smith-Wagner ideal observer is equivalent 
to the ideal observer restricted to using an envelope image.  
Since the ideal observer always maximizes performance, the 
Smith-Wagner observer must therefore be a lower-bound for 
an envelope-image ideal observer.  Here we assume that this 
lower bound is tight (i.e. that performance of the Smith-
Wagner observer is very nearly as good as the ideal observer).  
If the Smith-Wagner observer substantially under-estimates 
the performance of the envelope image ideal observer, our 
analysis will over-estimate the information lost in creating an 
envelope image, and thus underestimate the information lost 
by the human observers. 
 

The efficiency of the Smith-Wagner observer is given in 
Figure 7B, and the relative efficiency of the human observers 
to the Smith-Wagner approximation is given in Figure 7C.  
These plots reveal some surprising effects.  For example, the 
low efficiency of human observers in Task 4 can be almost 
entirely explained as a loss of information in the computation 
of an envelope.  Another surprise is the high relative 
efficiency of human observer for the B-mode images as 
compared to Wiener-filtered images as seen in Figure 7C. 
Figure 7B suggests that Wiener-filtered envelope images 
contain much more diagnostic information than non-filtered 
images, at least for tasks 1-4, but that human observers do not 
have full access to the additional information.  Nevertheless, 
human visual detection efficiency is significantly improved by 
Wiener filtering of the RF data.  If this result is borne out by 
further investigation, is suggests that further improvements in 
detection performance may be found by subsequent 

processing of the Wiener-filtered data in a manner reminiscent 
to color-flow Doppler imaging of blood velocity.  Here, the 
RF echo signal contains information about blood cell 
movement, but B-mode images do not make this information 
easily accessible to humans.  Consequently echo signals are 
processed to estimate velocity, and the estimates are rendered 
in color to clearly indicate flow information.  

It is also possible that the differences in observer 
efficiencies shown in Figure 7B for tasks 2-4 could be 
explained by a breakdown in the Smith-Wagner observer, 
where the assumptions of large, constant target contrast is 
violated.  Violations will reduce the performance of Equation 
14 below ideal, so that the human detection efficiencies 
summarized in Figure 7C would be smaller than those 
indicated.  The only way to test this definitively would to find 
the ideal observer of B-mode images for two-class 
discrimination tasks limited by spatial resolution. 

The efficiency of the Smith-Wagner observers also explains 
much of the impaired performance of human observers in 
Task 5 when Wiener-filtered envelope images are used. Recall 
that this task involves the discrimination of an anechoic lesion 
from a weakly scattering hypoechoic one. This performance 
degradation may reflect the fact that the Wiener filter is not 
tuned for the lesion interior, where the object scattering 
function is significantly lower than the highly scattering tissue 
surrounding it.  As a result, the Wiener filter will tend to boost 
frequencies in which the signal is much noisier than assumed 
in the derivation of the Wiener filter.  

The decomposition in Equation 18 used for this analysis is 
useful for ultrasonic imaging in that it separates the effects of 
signal processing from those of the human observer.  
However, a number of interesting questions remain to be 
answered regarding sources of information loss within the 
human observer.  These have all been lumped into the ηH|SW 
term here.  Known limitations of human observers such as 
sampling efficiency [39], internal noise [40] and nonlinear 
effects such as spatial uncertainty [41, 42] remain to be 
investigated for their role in limiting human observer 
efficiency. 
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D. Assumptions and limitations of the study. 
The ideal observer has been derived under a number of 

assumptions about the nature of scattering in breast tissue, and 
about the form of the system response.  Here we review those 
assumptions and discuss their ramifications briefly. 

We have assumed that the scattering function for tissue can 
be represented by a white Gaussian random process.  Tissues 
that are better described as very sparse random distributions of 
point scatterers, e.g., cysts, or nonrandom distributions, e.g.,  
cellular hyperplasia, may lead to non-Gaussian statistics in the 
RF response, as described previously [43, 7] and more 
recently by Barrett and Myers [25, Chapter 18].  We would 
expect the advantage of Wiener filtering to diminish as the 
density of point scatterers is reduced under high echo signal-
to-noise ratio (eSNR) conditions.  When the density of 
scatterers is low enough that the pulse interacts with only one 
scatterer at any given time, the ideal observer will simply 
count the individual scatterers and find results that are 
independent of any filtering.  However, if the density of 
scatterers is sparse and eSNR is low, then the Wiener filter 
responds as a matched filter for the point spread function, and 
some improvement may be expected through noise 
suppression.   Also, it is possible that the approximation to the 
covariance matrix inverse in Equation 10 may require many 
terms to converge in this situation, and therefore the Wiener 
filter may be a poor approximation to the ideal strategy, as 
seen to some extent in Figure 6. 

The second part of the independent Gaussian assumption 
for f in Equation (2) is the assumption that the correlation 
length among object scatterers is small with respect to the 
pulse wavelength.  This seems reasonable for scattering at the 
cellular scale where the wavelength is 0.15 mm at 10 MHz 
and cell size is on the order of 0.015 mm.  However, it may be 
the case that scattering arising from vasculature and other 
macrocellular tissue objects generates extended object 
correlations  The approach taken in this paper can be 
generalized to incorporate a stationary correlation structure by 
replacing the object covariance matrix, defined above as 

, by  (2
objσ +I S)
 ,  ( ) ( )1/ 2 1/ 22

obj objσ + +I S C I S
where Cobj is a stationary matrix of correlation coefficients.  A 
power series approach to computing the ideal observer can be 
derived from this generalization.  However, it is not clear that 
the same spatial correlation structure will exist inside a well 
defined lesion as in the surrounding tissue, and hence it is not 
clear that this generalization would fully resolve the issue of 
spatial correlations in the object scattering function. 

The assumption of shift-invariance in the system response 
to the pulse profile is, at best, only reasonable in a small area.  
It also ignores conditions that generate strong grating lobes, 
e.g., those generated when a phased array is electronically 
steered at large angles.  Hence in order to be applicable in a 
large-area image, the Wiener-filter must be applied locally and 
the impulse response updated for each isoplanatic region.  

Wave front distortions, such as phase aberrations and acoustic 
shadowing, may be reconsidered as shift-varying impulse 
responses.  Shift variance does not invalidate the ideal 
observer concept as summarized by Eqs (5) – (8), but it does 
invalidate the linear approximation of Eq (9) that allows for 
closed form results and straightforward interpretation. 

While this work has made a number of simplifying 
assumptions in order to derive a tractable computational 
model, we feel that the results still have a bearing on the more 
complex clinical domain.  Our results suggest that relevant 
information about features important to the classification of 
disease can be transferred to the diagnostic image with much 
greater efficiency when the recorded RF signal is subjected to 
judicious processing.  

V. SUMMARY AND CONCLUSIONS. 
The central conclusion this work is that there appears to be 

considerably more diagnostic information in the measured RF 
signal acquired by an ultrasound transducer than in the final 
B-mode envelope image, and, in some cases, a substantial 
quantity of this information can be recovered by Weiner-
filtering the RF signal before computing an envelope. We 
demonstrate this through a combination of ideal observer 
analysis and psychophysical studies on a panel of tasks 
investigating features related to discriminating malignant and 
benign tissue in ultrasound mammography, although the 
approach is not limited to this application. 

Our ideal observer analysis is based on Gaussian 
assumptions for the scattering function of tissue established in 
previous work.  For two-class discrimination tasks these 
Gaussian assumptions lead to an ideal observer decision 
variable that is a quadratic form involving the inverse 
covariance matrix for each class. We have further developed 
the methodology in this area by deriving an iterative algorithm 
for implementing power-series inversion of the large 
nonstationary covariance matrices needed to implement the 
ideal observer.  Each iteration of this algorithm is equivalent 
to adding another term in the power-series expansion.  An 
analysis of the power-series expansion after one iteration 
reveals a role for the Wiener filtering before computing the 
final envelope image. 

We have investigated the effects of Wiener filtering on a 
panel of five tasks that investigate features of ultrasound 
images used by mammographers to discriminate benign from 
malignant tissue in the breast.  We find that in four of the five 
tasks, Wiener filtering results in a substantial improvement in 
observer performance over the standard B-mode envelope.  
These tasks include detection of a mildly hypoechoic region, 
and three tasks that investigate the shape and appearance of 
lesion boundaries.  However, in a task involving 
discrimination of a hypoechic lesion interior from an anechoic 
interior, we find a reduction in performance after Wiener 
filtering.  We suggest that this reflects an inappropriate 
amplification of noise by the Wiener filter in the lesion 
interior. 
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We find a large variability in observer efficiency with 
respect to the ideal observer with more than two orders of 
magnitude difference between the highest and lowest 
measured efficiency values across the five tasks.  For the 
purpose of optimizing ultrasonic signal processing, it is of 
interest to know if low efficiency of human observers reflects 
a loss of diagnostic information in the computation of an 
envelope image, or if the information is available in the 
images but inaccessible to human observers.  We have used an 
approximation to the ideal observer acting on an envelope 
image developed by Smith and Wagner to disambiguate 
effects of computing an envelope from those of the human 
observer.  This analysis shows that the envelope computation 
is the more significant limiting step for standard B-mode 
processing, and is generally improved by Wiener-filtering the 
RF data.  Surprisingly, human observers appear to be less 
efficient at reading the Wiener-filtered envelope images than 
the B-mode images making the overall gains in performance 
even more impressive.  The residual inconsistency in human 
observer efficiencies for these tasks motivates further study 
investigating its source as well as the development of observer 
models for predicting the human observer. 

APPENDIX 
In this appendix, we show that the iterative algorithm given 

in Equation 11 is equivalent to the power series inversion 
formula given in Equation 10. Specifically we show that the 
final product, 0

t
Kv v , is equivalent to the first K elements of 

the power series, 

 . (A1) ( )1/ 2 1/ 2 1/ 2 1/ 2
0 0 0 0 0

0

K kt t
K i

k

− − − −

=

= − ∆∑v v g Σ Σ Σ Σ Σ g

We use induction to demonstrate this relation, and therefore 
we need to show that the relation holds for K = 0, and that it 
holds for K + 1 if it holds at K. 

For K = 0, the right side of Equation A1 simplifies to  
 1

0
t −g Σ g  (A2) 

since a matrix raised to the power zero is defined to be the 
identity and .  This is also precisely what the 

algorithm gives since v0 is initialized to 

1/ 2 1/ 2 1
0 0 0
− − −=Σ Σ Σ

1/ 2
0
−Σ g , and hence 

. 1
0 0 0
t t −=v v g Σ g
We begin the second step in the induction by considering 

the vector uK.  From the update formula for u given in 
Equation 11, it is clear that  

 . (A3) ( )1/ 2 1/ 2 1/ 2
0 0 0

K

K i
− − −= − ∆u Σ Σ Σ Σ g

Now, let us assume Equation A1 holds for some step K, and 
consider K + 1.  In this case, the iterative algorithm specifies 
that   

 . (A3) (0 1 0 1
t t

K K+ = +v v v v u )K +

Using Equations A1 and A3 above we find that 

  (A4) 

( )

( )
( )

1/ 2 1/ 2 1/ 2 1/ 2
0 1 0 0 0 0

0
11/ 2 1/ 2 1/ 2 1/ 2

0 0 0 0

1
1/ 2 1/ 2 1/ 2 1/ 2

0 0 0 0
0

,

K kt t
K i

k
Kt

i

K kt
i

k

− − − −
+

=

+− − − −

+
− − − −

=

= − ∆

+ − ∆

= − ∆

∑

∑

v v g Σ Σ Σ Σ Σ g

g Σ Σ Σ Σ Σ g

g Σ Σ Σ Σ Σ g

and thus A1 holds for K + 1.  We have therefore shown by 
induction that iterating the algorithm of Equation 11 
successively adds terms to the power series inversion formula. 
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