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Linear Approach to Axial Resolution in
Elasticity Imaging

Jie Liu, Craig K. Abbey, and Michael F. Insana, Member, IEEE

Abstract—Thus far axial resolution in elasticity imag-
ing has been addressed only empirically. No clear analyti-
cal approaches have emerged because the estimator is non-
linear in the data, correlation functions are nonstationary,
and system responses vary spatially. This paper describes
a linear systems approach based on a small-strain impulse
approximation that results in the derivation of a local im-
pulse response (LIR) and local modulation transfer function
(LMTF). Closed-form solutions for strain LIR are available
to provide new insights on the role of instrumentation and
processing on axial strain resolution. Novel phantom mea-
surements are generated to validate results. We found that
the correlation window determines axial resolution in most
practical situations, but that the the same system prop-
erties that determine B-mode resolution ultimately limit
elasticity imaging.

I. Introduction

Many imaging devices are conveniently modeled as lin-
ear systems despite the fact that few, if any, are truly

linear. Nonetheless, linear approximations lead to accu-
rate predictions of engineering features that summarize
important aspects of image quality within the limitations
of the assumptions. This paper describes a linear system
approach to elasticity imaging that predicts axial resolu-
tion.

The diagnostic utility of elasticity imaging depends in
part on its ability to spatially resolve objects with dis-
tinct viscoelastic properties. For example, malignant ep-
ithelial cells in breast cancer send molecular signals to
stromal cells that upregulate collagen production and in-
crease crosslinking to stiffen cells in the region [1]. Elas-
ticity can help to identify these malignancies if the mar-
gins of the lesion in the strain image can be delineated
accurately for comparison with the corresponding B-mode
image [2]. Also, vascular elasticity imaging requires sub-
millimeter resolution to distinguish media and adventitia
layers [3]. Intuition suggests that the upper limit for the
axial resolution of displacement and strain estimates is de-
termined by properties of the ultrasonic system acquir-
ing the data. Therefore, carrier frequency, bandwidth, and
aperture of the transducer are key elements. However, the
correlation window dimensions, differentiation and inter-
polation filters, nonlinear estimators, and regularization
methods applied to reduce noise also must affect resolu-
tion. If the procedure includes static deformation, then
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the object shape and the applied mechanical stimulus are
additional factors.

Spatial resolution of strain images has been measured
using phantoms with spherical and cylindrical targets in
uniform backgrounds. Echo data were simulated [4], [5] or
recorded from gelatin phantoms [6], and the Rayleigh crite-
rion was applied to assess axial and lateral resolution; the
latter study made connections to the modulation transfer
function (MTF) computed from echo simulations. They
found that strain resolution is indeed ultimately limited
by transducer properties as intuition suggests. However,
no one has yet analyzed this important problem analyt-
ically to show how contributing elements interact to de-
termine the measured axial resolution. The methods pre-
sented in this report make it possible to determine situa-
tions in which axial strain resolution is being limited by
the strain estimator (in which case a better estimator is
needed) or is more fundamentally limited by the trans-
ducer properties. The ability to isolate limiting sources is
very difficult to do by empirical methods.

This paper gives a general statement of the strain imag-
ing problem, describes a one-dimensional (1-D) analytical
method for computing the local impulse response (LIR)
and associated local MTF (LMTF), and verifies predic-
tions using simulation and phantom measurements. The
phantom is designed to approximate a 1-D strain impulse
that enables us to isolate sources of blur caused by instru-
mentation and processing that are independent of object
features.

II. Acquisition and Estimation: The General

Problem

The object function fj(x) describes the distribution of
scattering sources during acquisition of the jth echo frame.
It is a function of continuous vector position x, and it
can be deterministic, a realization of a stochastic process,
or contain elements of both. Relative scatterer motion is
observed by examining an object during two or more in-
stances in time; e.g., at frame j and j+1. These are related
by a displacement vector dj+1(x) that describes the move-
ment of scatterers between times that the two frames are
recorded:

fj+1(x) = fj(x + dj+1(x))

=
∫ ∞

−∞
dx′fj(x′)δ(x′ − x − dj+1(x)),

(1)

where δ(x) is the multidimensional Dirac delta (integral
one). The linear shift-variant form of (1) requires the ob-
ject f to be functionally independent of displacement d,
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which is often valid for small deformations. Movement of
scatterers out of the imaging plane is one situation in which
the assumption fails.

To describe strain estimators operating on discretely
sampled data, it is convenient to adopt a matrix form.
Imagine sampling a continuous object on an interval small
compared to that of echo sampling to yield an Nf×1 object
vector fj in �3. Samples from a 3-D object can be arranged
into the 1-D column vector by lexicographical reordering
[7]. Consequently, (1) can be rewritten as:

fj+1 = Qj+1fj + er
j+1, (2)

where er
j+1 represents registration errors arising from sam-

pling. Shifts in scatterer position represented by an inte-
gral transformation in (1) are now expressed by a matrix
multiplication in (2). Qj+1, a square Nf × Nf operator
matrix, describes the spatial transformation of scatterer
positions that occurs between frames j and j + 1.

Scanning the object with a linear imaging system, we
acquire the following pre- and postdeformation echo data
vectors:

gj = Hf j + ej ,

gj+1 = HQj+1fj + ej+1,
(3)

where the noise vectors e = Her+ea include both registra-
tion errors and acquisition noise. H is an Ng × Nf system
matrix whose rows are the impulse response at each spa-
tial location. It maps the Nf × 1 object vector f into a
lower dimensional Ng × 1 data vector g, describes the co-
herent summation of scattered waves at the aperture, and
thus the effects of downsampling, speckle and blur. This
summarizes the forward problem.

In the inverse problem, displacements can be found by
analyzing echo signals if the deformation of the object de-
scribed in (3) can be approximated by a deformation of
the echo signal:

gj+1 � Dj+1Hf j + ej+1.

In those situations, displacements may be estimated from
pairs of echo frames using constrained optimization; specif-
ically, we seek D′ that minimizes the objective function [7]:

D̂j+1 = argmin
D′

(‖gj+1 − D′gj‖2 + α‖r‖2). (4)

‖ · ‖ is the vector norm, and r is a roughness penalty vec-
tor [8] and a function of the displacement vector d′(x) [9],
[10]. α is a constant that controls the trade-off between
fidelity of estimates to the data via ‖gj+1 − D′gj‖2 and
the smoothness of the solution via ‖r‖2. In situations in
which gj and gj+1 are highly correlated, we set α � 0 to
accurately estimate the displacement vectors, i.e., D̂ � D.
However, in regions in which the echo correlation coeffi-
cient deviates significantly from 1, decorrelation noise is
reduced at the cost of biasing estimates by increasing α.
Note that the minimum value of the objective function in
(4) is ‖ej+1 − Dj+1ej‖2 at D′ = Dj+1, α = 0, so that
noise minimization is essential.

Implementation of (4) has been studied for strain esti-
mation using a variety of algorithms [8]–[13]. However, by
far, the simplest and most widely used approach to solving
(4) is cross correlation; and (4) is equivalent to maximiza-
tion of the cross-correlation function when α = 0 and the
signal energy does not change significantly during defor-
mation, e.g., ‖D′gj‖2 � ‖gj+1‖2. Consequently, for rel-
atively small deformations [13], the maximum likelihood
estimator for displacement is:

D̂ = argmax
D′

(gj+1,D′gj), (5)

where (gj+1,D′gj) is the inner product of the vectors. Dis-
placement estimators in (4) and (5) are nonlinear in the
data. Strain tensors are found from linear combinations of
spatial derivatives of displacement taken along the coordi-
nate axes [14].

Eq. (3)–(5) are statements of the general ultrasonic
strain estimation problem, independent of estimation tech-
nique, in which local displacements resulting from an ap-
plied stress stimulus are estimated by comparing echoes
recorded at different times.

Eq. (5) shows that the cross-correlation function is
an essential feature of displacement measurements in de-
formed random scattering media. The presence of echo
noise requires spatial averaging of correlation function esti-
mates to reduce displacement errors. Yet only rigid trans-
formations (i.e., zero-strain conditions and linear shift-
invariant imaging systems) yield position independent
(stationary) correlation. Consequently, applying any strain
at all to the object produces nonstationary correlation
function.

We are proposing a linear, Fourier-based analysis of spa-
tial resolution for strain imaging that accurately predicts
measurements, over a reasonable range of global deforma-
tion (<5%), despite the nonstationarity of the correlation
estimates for nonzero strain, the nonlinearity of the esti-
mator, and the use of shift-variant imaging systems. The
approach is to analyze the response of the system to a
small-amplitude, strain impulse. The resulting correlation
function is piecewise stationary, except in the small inter-
val in which the strain is nonzero. Images of a strain im-
pulse yield measurements of LIR [15] whose Fourier trans-
form gives the LMTF of the system. We derive expressions
for displacement and strain, then test them using simu-
lated echo data and phantom measurements.

III. Correlation for a 1-D Strain Impulse

To simplify the analysis, echo samples gj [n] from frame
j are modeled as arising from a 1-D object function fj(x)
through the continuous-to-discrete integral transforma-
tion [16]:

gj[n] =
∫ ∞

−∞
dxh(nT, x) fj(x) + ej[n]. (6)



718 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 6, june 2004

Parentheses and brackets indicate functions of continu-
ous and discrete variables, respectively. h(t, x) maps spa-
tially varying object functions into time-varying data vec-
tors that are sampled on the time interval T , such that
t = nT for integer n. e[n] are samples of a signal indepen-
dent noise vector. It is assumed that f and e are drawn
from wide-sense stationary (WSS) random processes, and
that f1(x) = f(x) and f2(x) = f(x + d(x)). Instead of
solving for the entire displacement field simultaneously, as
suggested by (5), we segment echo vectors with overlapping
window functions and compute the average displacement
at each windowed location.

To study axial resolution, we apply a strain “impulse”
at location xs. More precisely, it is a rectangular function
of magnitude s/Xs and length Xs, i.e., ε(x) = (s/Xs) ·
rect((x − xs)/Xs). It may be considered an impulse when
the sampling interval equals the length Xs = cT/2, where
c is the longitudinal sound speed. We impose the physical
constraint that the displacement is less than the interval
|s| ≤ cT/2 to prevent “folding” that occurs when ε > 1.
The corresponding displacement profile is a ramp function:

d(x) =
∫ ∞

−∞
ε(x′)dx′ =

s

Xs

∫ x

−∞
rect

(
x′ − xs

Xs

)
dx′

⎧⎪⎪⎨
⎪⎪⎩

0 x < xs − Xs/2
(x − xs + Xs/2)s

Xs
xs − Xs/2 ≤ x ≤ xs + Xs/2.

s x > xs + Xs/2

(7)

In the continuous limit, Xs → 0 and d(x) = s
∫ x

−∞ δ(x′ −
xs)dx′ = s · step(x − xs), i.e., the ramp becomes a step
function and the strain profile is a true impulse; (7) is
approximated experimentally by compressing a phantom
consisting of a thin, soft layer surrounded by stiff, thick
layers as described in Section VI. Note that, for a com-
pressive stimulus, ε, d, and s have negative values.

Displacement is estimated by windowing and cross cor-
relating gj with gj+1, interpolating the result, and locating
the peak. Estimates d̂(x) correspond to the lag at the cor-
relation peak. The axial strain profile ε̂(x) is given by the
spatial derivative of d̂(x). Let us examine the details of
this estimator for an ideal imaging system.

A. Ideal System

Eq. (6) for an ideal imaging system h(t) = δ(t) without
noise gives the echo signal gj[n] = f(ncT/2) = f [n]. gj

and gj+1 are multiplied by the same rectangular window
function w[n] = rect((n − nm)/N) to give g′

j and g′
j+1,

where N = 2(x2 − x1)/cT + 1 is the number of samples in
the data window, nm = (x1 + x2)/cT identifies the center
sample in the window, and n1 = 2x1/cT , n2 = 2x2/cT .
Windowed echo signals from the ideal system are sampled
object functions plus noise (Fig. 1):

g′
j[n] =

{
f [n] + ej [n] n1 ≤ n ≤ n2

0 otherwise
, (8a)

Fig. 1. Signals before and after an impulse deformation. An object
f1(x) undergoes a step displacement d(x) = s step(x − xs) to give
f2(x). Echo waveforms are generated before and after deformation,
sampled, and range gated using w[n] to give the digital echo sam-
ples g′

1[n] and g′
2[n]. Displacements are estimated by analyzing cross-

correlation estimates at lag m.

g′
j+1[n] =

⎧⎪⎨
⎪⎩

f [n] + ej+1[n] n1 ≤ n ≤ ns

fs[n] + ej+1[n] ns + 1 ≤ n ≤ n2.

0 otherwise (8b)

The function fs includes shifts in the continuous object
function that can be smaller than the sampling interval of
the data. An arbitrary shift may be applied with minimal
artifact to a discretely sampled signal by bandlimited sinc
interpolation of f [n], shifting, and resampling [17]. The
result is a convolution:

fs[n] =
∞∑

n′=−∞
f [n′]

sinπ(n − n′ − 2s/cT )
π(n − n′ − 2s/cT )

= (hs ∗ f)[n],

(9)

where the interpolation filter is hs[n] = sinc(n − 2s/cT ).
For the special case ε(x) = −rect(2(x − xs)/cT ), there is
a shift of one sampling interval s = −cT/2 at position xs

so that hs[n] = δ[n + 1] and fs[n] = f [n + 1].
A biased estimate of the cross-correlation function for

one signal pair φ̂g′
j
g′

j+1
is often time averaged over the win-

dow function w to give [18]:

φ̂g′
j
g′

j+1
[nm, nm − m] =

1
N

n2−m∑
n=n1

g′
j [n]g′

j+1[n − m]

=
1
N

[
ns−m∑
n=n1

f [n]f [n − m] + Noise

+
n2−m∑

n=ns−m+1

f [n]fs[n − m]

]
; 0 ≤ m ≤ N.

(10)
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Noise-noise and noise-signal terms are lumped into one
term labeled noise. Time averaging is applied to reduce
variability generated by the random object function and
noise. This is allowed because fj+1 is piecewise WSS over
the segments [n1, ns] and [ns +1, n2]. Ensemble averaging
the time-averaged cross-correlation function for uncorre-
lated noise gives:

φg′
j
g′

j+1
[nm, nm − m] = ε

{
φ̂g′

j
g′

j+1

}
= φf ′

j
f ′

j+1

=
1
N

[
ns−m∑
n=n1

φff [m] +
n2−m∑

n=ns−m+1

φfs[m]

]

= w1[nm, m]φff [m] + w2[nm, m](hs ∗ φff )[m], (11)

where ε{·} is the expectation operator, φff [−m] = φff [m],
and φfs[m] = ε{f [n]fs[n−m]} = ε{f [n+m](hs ∗f)[n]} =
(hs ∗ φff )[m] for real, WSS f . Also, w1 and w2 weight the
correlation sequences depending on window location:

w1[nm, m] =

{
(N1 − m)/N 0 < m ≤ N1

N1/N m ≤ 0
,

w2[nm, m] =

{
N2/N m ≥ 0
(N2 − |m|)/N −N2 ≤ m < 0

, (12)

where N1 = ns − n1 + 1 and N2 = n2 − ns. We only
considered positive correlation lags in (10) and (11). The
sum limits change to

∑ns−m
n1−m +

∑n2
ns−m+1 when m < 0, as

with compression, and so the weighting windows depend
on the sign of m as shown in (12). Without deformation,
(11) becomes φg′

1g′
2
[m] = ((N − |m|)/N)φff [m]∀m.

Given the step displacement profile of (7), we find that:

φff [m] = a2δ[m],

φfs[m] = a2sinc(m − 2s/cT ),
(13)

where a2 �
= ε{|f [n]|2} and δ[m] is the Kronecker delta

of amplitude one at m = 0 and zero otherwise. A sub-
sample shift in the uncorrelated random object function
yields a sinc correlation function with zeros positioned at
x = k(1+2s/cT ) for k = ±1,±2, . . . . Sinc interpolation is
exact for signals of infinite length. However, a more prac-
tical expression for φfs is obtained by applying the linear
interpolation filter [17]:

φfs[m] �
{

a2|1 − |m| − 2|s|/cT | |m| ≤ 1
0 otherwise

.
(14)

Recall that nm = (n2 + n1)/2 identifies the echo sample
at the center of the time window. Combining (11)–(14)

we find the cross-correlation function for a compressive
step displacement is:

φg′
j
g′

j+1
[nm, nm − m] = a2δ[m]; nm − ns < −N/2

=

⎧⎪⎨
⎪⎩

a2

N (N1 + N2(1 − 2|s|/cT )) m = 0
(2a2|s|/cT )(Ns/N) m = 1; |nm −ns| < N/2
0 else

=

⎧⎪⎨
⎪⎩

a2(1 − 2|s|/cT ) m = 0
2a2|s|/cT m = 1; nm − ns > N/2
0 else

(15)

where N1 = −nm + ns + N+1
2 and N2 = nm − ns + N−1

2 .
Referring to Fig. 1, the three regions in nm define the
correlation function when the window is to the left of the
strain impulse, includes the strain impulse, and is to the
right of the strain impulse.

The exact location of the correlation peak in each re-
gion can be found by applying a second-order Lagrange
(quadratic) interpolator to φg′

1g′
2

about the lag sample

nearest the peak. We define εa
�
= |2s/cT | as the magni-

tude of the strain impulse at xs. When −1 < εa < −0.5,
the peak will occur at m = 1. However when −.5 ≤ εa ≤ 0,
which we assume in what follows, the peak will occur at
m = 0. Interpolating the correlation function about the
origin, differentiating and setting the result equal to zero,
we find the following nonlinear estimator:

d̂[nm] =
cT (φg′ [nm, −1] − φg′ [nm, 1])

4(φg′ [nm, −1] − 2φg′ [nm, 0] + φg′ [nm, 1])
.
(16)

Here we abbreviated φg′
j
g′

j+1
[nm, nm − m] as φg′ [nm, m];

(16) is analogous to (5) for the strain impulse experiment.
Displacement is measured over the axial range 1 ≤ nm ≤
M .

To illustrate, let us apply a 50% compressive strain over
one sampling interval located at xs, i.e., ε(x) = −0.5 ·
rect(2(x − xs)/cT ). In the first region of (15), in which
the correlation window is entirely to the left of the strain
impulse (Fig. 1), the correlation function is simply a2δ[m],
and from (16) we find the estimate d̂[nm] = 0. In the
third region of (15), in which the correlation window is
entirely to the right of the strain impulse, the two nonzero
values of the correlation function both equal a2/2, and
indeed (16) yields d̂[nm] = −cT/4. However, in the second
region of (15), the window straddles the strain impulse
and, therefore, estimates are weighted by N1 and N2 so
that (16) yields:

d̂[nm] = − cT/4
4N1/N2 + 1

.

It is easy to see that at either extreme, where N1/N2 =
N or 1/N , the results approach 0 and −cT/4, respectively,
as expected for large N . More importantly, the effects of
the correlation window duration and interpolation func-
tion on displacement estimates is available from region
two, the only region in which the strain is nonzero.
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A general expression for the displacement in the second
region of (15) is:

d̂i[nm] =
cT/4

3 − 2N/(N2εa)
. (17)

B. Realistic System

The correlation function for a realistic pulse-echo sys-
tem cannot be expressed as the sum of piecewise WSS
processes as in (10). The blur from the finite pulse dura-
tion mixes object scatterers located before and after the
displacement step. Although this process can be modeled
numerically, such results do not provide the physical in-
sights we seek. Instead, we propose simply filtering the
displacement estimates of (17) using a digital approxima-
tion to the system impulse response h[n] as in (6). This
gives the local impulse response for displacement:

LIRd[nm]
�
= d̂r[nm] =

∞∑
n=−∞

h[nm, n] d̂i[n].
(18)

Imaging systems often have compact impulse response
functions, thus shortening the range of summation in (18).
The validity of (18) is tested below in applications involv-
ing data simulations and phantoms.

IV. Strain LMTF and Axial Resolution

The LIR for strain is estimated from the filtered deriva-
tive of (17) with respect to nm, or, through a change of
variable, with respect to N2:

ε̂i[nm] = − N

9εa

(
2N
3εa

− N2

)2 and (19)

LIRε[nm]
�
= ε̂r[nm] =

∞∑
n=−∞

h[nm, n]ε̂i[n]. (20)

Eq. (20) is finite because the double pole in (19) is out-
side the range 1 ≤ N2 ≤ N ; (19) and (20) express the
estimated strain in terms of the applied strain.

The LMTF for strain is the normalized discrete Fourier
transform of LIRε [19]:

LMTF[k] =
|Ξ[k]|
Ξ[0]

, (21)

where

Ξ[k]
�
= F{LIRε[nm]} =

M−1∑
nm=0

ε̂r[nm]e−i2πknm/M ,

and M is the number of strain measurements along each
line of site. Output displacement and strain for a strain im-
pulse input and the corresponding LMTF curves are given
in Fig. 2. We adopt a common figure of merit for specifying

Fig. 2. Displacement profiles estimated for the ideal d̂i (17) and re-
alistic d̂r (18) imaging systems scanning a strain “impulse” (top).
Corresponding LIRε (19) and (20) (middle), and LMTF (21) (bot-
tom) also are shown.

axial resolution as the inverse value of the lowest spatial
frequency u0 = 2k0/McT , at which the LMTF curve drops
to 0.1. For example, if u0 = 2 mm−1, one interpretation
is that the system is capable of resolving cyclic strain pat-
terns on a scale larger than two line pairs per millimeter.

The procedure for computing LMTF from experimen-
tally recorded echo data is straightforward.

• Compute φ̂g′
1g′

2
for a strain impulse using the the first

line of (10).
• Interpolate the result then estimate displacements

from the correlation lags at the maximum value of
φ̂g′ , specifically,

d̂[nm] =
cT

2
argmax

m

(
I

{
φ̂g′

j
g′

j+1
[nm, nm − m]

})

gives LIRd at the location nm. I{·} is the interpolation
operator.

• Digitally filter d̂[nm] with a finite impulse response
(FIR) differentiator hd [17] to estimate LIRε,

ε̂[nm] = (hd ∗ d̂)[nm]. (22)

• Compute LMTF and u0 from (21).

The following sections describe echo simulations and
phantom experiments that test these ideas.
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Fig. 3. Using echo simulations, predicted (dash-dotted line) and mea-
sured (solid line) values of the axial resolution metric 1/u0 are shown
as a function of strain. The pulse-length parameter is Lp = 0.35 mm,
and correlation window length is NcT/2 = 0.86 mm. Error bars de-
note one standard deviation.

V. Echo Simulations and Measurements

Object functions fj were generated numerically in 1-D
using Monte Carlo methods. The mean number of scat-
terers positioned along the entire axis was selected to be
greater than 20 per pulse length to ensure fully developed
speckle conditions. The mean was introduced into a Pois-
son random number generator to select the actual number
of identical point scatterers present for each realization
of fj .

Next, each scatterer was positioned continuously along
the axis using a uniform random number generator on
the interval. Consequently, scatterer positions are uncor-
related. A binomial random number generator was used to
determine polarity of the scattering amplitude so that the
spatial mean value for fj was zero.

This object function was convolved with the linear time-
invariant impulse response of the system, given by the
Gaussian modulated sinusoid h(t) = exp(−t2/2σ2

t ) sinω0t
yield gj . The carrier frequency of the pulsed transmission
was ω0/2π = 7.2 MHz, c = 1.54 mm/µs, and σt is the
pulse-duration parameter (in µs). The pulse-length param-
eter Lp (in mm) is related to σt, and the effective band-
width Beff (in MHz) using Lp = cσt

√
π = c/(2Beff) [13].

We considered pulse lengths in the range of 0.13mm ≤
Lp ≤ 1.63 mm corresponding to effective fractional band-
widths of 0.78 ≥ Beff/f0 ≥ 0.065. The echo signal then was
downsampled, multiplied by a rectangular window func-
tion w[n], and white Gaussian noise was added (40 dB echo
signal-to-noise ratio, SNR) to give the predeformation echo
signal g′

j [n] at a sampling rate of 57.6 Msamples/s.
Given that scatterers were positioned continuously

along the axis, they were accurately displaced by applying
(7) directly. Deformed object functions fj+1 were sampled,
scanned and downsampled via (6), windowed, and noise

Fig. 4. Using echo simulations, predicted (dash-dotted line) and
measured (solid line) values of the axial resolution metric 1/u0 are
shown as a function of pulse length. The correlation window length
NcT/2 = 0.86 mm (upper curve), NcT/2 = 0.43 mm (lower curve)
and applied strain ε = 0.05 were fixed. The dashed line indicates the
axial resolution metric for B-mode imaging. Error bars denote one
standard deviation.

was added to yield g′
j+1[n]. Deformation before sampling

made it unnecessary to apply (9). Strain amplitudes in
the typical tissue imaging range 0.005 ≤ εa ≤ 0.05 were
studied. For each parameter analyzed, sets of 200 inde-
pendent waveform pairs {g′

j} and {g′
j+1} were generated.

We computed (10) from each data vector pair and aver-
aged the 200 results to approximate φg′

j
g′

j+1
. Subsequently,

quadratic interpolation was applied, the lag at the inter-
polated correlation peak was found, and that result was
converted to a displacement to give the LIRd. The LMTF
was computed via (21), and u0 was found to summarize
the axial resolution limit of the system.

In Figs. 3–5, axial resolution predictions for different
combinations of experimental parameters are compared
with measurements obtained from echo simulations. Fig. 3
shows values of 1/u0 for typical measurement conditions.
Small values of 1/u0 indicate high-resolution images; in
this case, the resolution limit is u0 � 1.06 lp/mm. Two
observations are immediately apparent from Fig. 3. Mea-
surements up to 5% applied strain are accurately predicted
by the linear approach, and the axial resolution does not
appear to depend on the applied strain.

Fig. 4 shows values of the axial resolution metric 1/u0
for strain imaging and B-mode imaging as a function of
the pulse length parameter Lp, where other parameters
are held constant. (Notice that the B-mode resolution with
our criterion is proportional but not equal to Lp.) The B-
mode metric does not depend on the correlation window
length, of course, but it does decrease with pulse length,
suggesting improved axial resolution. We see that the axial
resolution for strain imaging is dominated by the window
length when it exceeds the pulse length. However, strain
resolution is ultimately limited by the pulse length of the
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Fig. 5. Comparison of 1/u0 values predicted (dash-dotted line), mea-
sured from echo simulations (solid line), and measured from phan-
tom experiments (triangles) as a function of window length. The
pulse length Lp = 0.35 mm and applied strain ε = 0.05 were held
constant. The dashed line indicates the axial resolution metric for
B-mode imaging, and the error bars denote one standard deviation.

ultrasonic system; therefore, B-mode resolution is an ac-
curate estimate of the upper bound for strain resolution.

Fig. 5 shows 1/u0 versus window length when other pa-
rameters are held fixed. Again, the pulse length determined
the upper bound of strain resolution. The metric increases
linearly (strain resolution falls) as the window length ex-
ceeds the pulse length, similar to the results found by oth-
ers [6].

VI. Phantom Measurements

Predictions of the analysis and measurements from echo
simulation were validated using phantom experiments.
The phantom (Fig. 6) has two stiff graphite-in-agar blocks
[20] with adjacent planar surfaces oriented normal to the
beam axis. Sandwiched between the surfaces was a thin
layer of graphite-agar slurry [21]. Once compressed, vir-
tually all strain is concentrated in the soft slurry layer,
thus approximating a ramp displacement profile described
mathematically by (7). The mean scattering amplitude
was approximately constant throughout the field.

Echo data were recorded while scanning the phantom
with a Siemens Elegra (Siemens Medical Solutions, Moun-
tain View, CA) system and a 7.5 MHz linear array (7.5L40)
transmitting 7.2 MHz broadband pulses. A single transmit
focal zone was centered on the layer. Viewing the real-
time, B-mode image display and adjusting the depth-gain
compensation manually to give constant echo amplitude
with depth over the region of interest, we recorded echo
signals. Echo frames containing 312 waveforms (0.22-mm
transducer pitch) of in-phase/quadrature (IQ) signals were
recorded. Radio frequency (RF) signals band limited at
12 MHz were digitized at 36 Msamples/s, mixed to form
IQ data, downsampled by 2.5 for electronic transfer, then

Fig. 6. The axial resolution phantom used to generate a “strain im-
pulse” (left). B-mode image (lower right) is formed from the phantom
region within the dashed box on the left. The strain image (upper
right) is formed from the region in the B-mode image outlined in the
white dashed lines. The thickness of the slurry-filled gap is between
0.2 and 0.4 mm.

upsampled by four before reconstituting RF waveforms.
All processing was performed off-line on personal comput-
ers. The strain image in Fig. 6 shows how the correlation
window determines LIRε.

Fig. 7 shows LMTF phantom measurements processed
with window lengths 1.71 mm, 0.86 mm, 0.43 mm, and
0.21 mm, respectively. Additionally, MTF curves for B-
mode images (pulse only) and the correlation window are
separately provided. Figs. 7(a) and (b) show that, when
the correlation window length exceeds the pulse length, the
axial resolution of elasticity imaging is determined by the
correlation window, i.e., measurements (solid lines) track
values for the correlation window (dotted lines). However,
when the correlation window is smaller than the pulse
length, Fig. 7(d), the LMTF curve for strain remains un-
changed since spatial resolution is ultimately limited by
the bandwidth of the ultrasonic imaging system; i.e., mea-
surements (solid line) tracks values for the pulse (dotted
line).

Fig. 5 summarizes measurements of 1/u0 obtained from
LMTF curves such as those in Fig. 7. We see that phantom
measurements closely match the predicted and simulation
results. The high degree of agreement is evidence that this
piecewise linear model of the elasticity imaging process is
able to represent experimental measurements.

VII. Discussion

There are three advantages to analyzing elasticity imag-
ing systems from the response to a “strain impulse” [ac-
tually, a displacement ramp as in (7)]. First, the nor-
mally nonstationary correlation function can be analyzed
in piecewise-WSS regions. Second, the LIR and LMTF can
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Fig. 7. Strain imaging LMTF curves for four correlation window lengths (a) 1.71 mm, (b) 0.86 mm, (c) 0.43 mm, (d) 0.21 mm. The
pulse length is 0.35 mm. Dotted lines indicate LMTF curves for correlation window, and solid lines indicate measurements from phantom
experiments. The dashed lines are LMTF curves for B-mode imaging.

Fig. 8. Nonlinear property of strain estimators is demonstrated. (a) Estimated strain from a cosine strain input with amplitude 0.01. The
frequency response is shown below. The results in (b) are the same as (a), but for an input cosine strain amplitude of 0.1.
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be measured directly to define axial resolution, even if
the system is shift variant. Third, the lag at the cross-
correlation peak prior to interpolation is known, thus en-
abling derivation of an explicit expression for strain (19),
despite the lack of an explicit expression for the general
estimation problem (4).

The linear shift-variant form of the signal model (6),
on which the entire method is based, depends on the scat-
tering properties of the medium being independent of the
applied deformation, and minimal effects of the nonlinear
displacement estimator on measurements. Both assump-
tions are reasonable at small deformations but neither hold
at larger values. The dependence of f(x) on εa was studied
previously [22]. Here we are concerned with the amount of
strain that can be applied before the linear approximation
breaks down.

To observe effects of the nonlinear estimator, we sim-
ulated echoes from a 1-D uniform scattering medium on
which a cosine strain is applied: εa(x) = A cos(kx), where
the amplitude 0.01 ≤ A ≤ 0.10 and the spatial frequency
was k/2π = 2 cycles/mm. Such a deformation can be pro-
duced experimentally from the radiation force of acoustic
standing waves [23]. Fig. 8(a) shows the estimated strain
profile and spectrum of response for the cosine input with
1% strain amplitude. The spectrum shows there is minimal
energy in the harmonics despite application of the nonlin-
ear estimator: the ratio of third to fundamental harmonic
amplitudes is 0.05. Fig. 8(b) gives the corresponding plots
for 10% cosine strain amplitude. Clearly, the higher am-
plitude input strain has been distorted by the estimator
to produce an output rich in odd harmonics. The third-
to-fundamental harmonic ratio for input strains of 0.01,
0.03, 0.05, 0.07, and 0.10 are 0.05, 0.09, 0.21, 0.69, and
0.92, respectively. The distortion is much greater if the in-
put strain has a nonzero mean, as observed previously [25],
and it involves even harmonics. Harmonic generation gives
the illusion of greater spatial resolution, when in fact the
low frequency information is just redistributed to higher
frequencies. The LIR and LMTF estimates do not apply
in this situation. Figs. 3–5 and 7 clearly show that the
analysis is able to accurately predict measurements up to
5% applied strain, which encompasses many imaging con-
ditions in biological media. However, the nonlinear nature
of the estimator means that the 5% applied strain limit is
likely to change if we vary the input function.

Eq. (19) and (20) describe how the correlation window
length, via N , the amplitude of the applied strain impulse
εa, interpolation, and properties of instrumentation, via
h, determine the axial resolution of strain estimates. Pro-
vided εa ≤ 0.05, the applied strain and interpolator have
negligible influence. The pulse bandwidth ultimately lim-
its resolution, although large correlation windows used to
suppress noise often determine the axial resolution in prac-
tice. Resolution in the plane normal to the sound beam
axis is determined by beam properties and sampling (line
density) as described by [5]. Note that this 1-D analysis
and accompanying measurements ignore any effects that
variations in cross-range strain will have on axial resolu-

tion. Discussions of optimal resolution inevitably rely on
noise properties, which are not treated here. The approach
of Fessler and Rogers [15] for nuclear imaging also seems
appropriate for evaluating resolution/noise issues in elas-
ticity imaging.

The net LMTF is not given by the product of LMTFs
for the individual factors affecting axial strain resolution.
Yet the data suggest that the LMTF for strain is given by
the LMTF for whichever factor is most limiting, usually
the correlation window.

VIII. Summary

The above results assume the correlation window shift is
one sampling interval, cT/2. The window shift determines
the axial strain pixel dimension. To reduce image forma-
tion time, shifts are increased from 1 to 8–16. Hence, pixel
size is a factor limiting spatial resolution, e.g., see (17).

For strains larger than 5%, companding techniques (re-
peated correlations followed by echo warping at different
spatial scales [24]) are applied to reduce the amount of
strain between g1 and g2 before cross correlation. Com-
panding is an adaptive process that varies spatially, de-
pending on the local deformation. Although our analysis
did not specifically treat companded signals—and it is pos-
sible that companding will reduce resolution—it could be
examined by analyzing cascaded correlators. This report
describes a linear analysis applied to elasticity imaging
systems under ideal conditions.
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