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A maximum-likelihood ~ML ! strategy for strain estimation is presented as a framework for
designing and evaluating bioelasticity imaging systems. Concepts from continuum mechanics,
signal analysis, and acoustic scattering are combined to develop a mathematical model of the
ultrasonic waveforms used to form strain images. The model includes three-dimensional~3-D!
object motion described by affine transformations, Rayleigh scattering from random media, and 3-D
system response functions. The likelihood function for these waveforms is derived to express the
Fisher information matrix and variance bounds for displacement and strain estimation. The ML
estimator is a generalized cross correlator for pre- and post-compression echo waveforms that is
realized by waveform warping and filtering prior to cross correlation and peak detection.
Experiments involving soft tissuelike media show the ML estimator approaches the Crame´r–Rao
error bound for small scaling deformations: at 5 MHz and 1.2% compression, the predicted lower
bound for displacement errors is 4.4mm and the measured standard deviation is 5.7mm. © 2000
Acoustical Society of America.@S0001-4966~00!00903-6#
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INTRODUCTION

Bioelasticity imaging provides important diagnostic i
formation about soft tissue stiffness not available with ot
imaging modalities. It is based on the principles of man
palpation, a standard diagnostic technique, but prom
greater sensitivity and spatial resolution. Numerous
proaches to bioelasticity imaging have been proposed.1–23 A
common feature of each technique is a force that is caref
selected to displace the tissue in a way that can be trac
using standard imaging technology, often ultrasonics or m
netic resonance. Analysis of the estimated displacement
yields an image of an elasticity modulus or strain.

We study strain estimation from tissue displaceme
caused bystatic compression. Static compression minimiz
the viscous effects of tissue dynamics. Local displaceme
are detected from changes in the ultrasonic echo fields
corded before and after compression. Unfortunately, the
ject motion necessary for strain contrast also can prod
noise as coherence is reduced between waveforms reco
before and after compression. The performance of strain
aging for visualizing stiffness variations is often noise lim
ited.

In a typical two-dimensional~2-D! strain imaging ex-
periment, we confine all motion in the body to the ima
plane. We then scan the tissue with broadband pulse-e
ultrasound to record a radio-frequency echo field at high s
tial resolution from the region of interest. This precompre
sion echo field is a reference by which the position of sc
terers after compression can be compared. Next
compress, hold, and re-scan the tissue to record the pos
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of displaced scatterers. The displacement field is meas
from the pre- and post-compression echo fields using a
quence of signal processing techniques that varies with
presumed nature of the deformation. Gradients of displa
ment are estimates of strain tensor components.24 One pri-
mary objective of the image formation algorithm is to max
mize coherence between the pre- and post-compres
waveforms to be cross correlated.

When object deformation is accurately described
scaling spatial coordinates of the echo signal, then wavef
compandingapplied before 1-D cross correlation has be
found to produce low-noise time delay estimates25 and strain
images.26 More complex deformations require imag
filtering27 or warping28,29techniques to improve coherence
the expense of processing time. For very complex motio
compressions must be applied incrementally and accu
lated to avoid waveform decorrelation.11,30 We will show
that a maximum-likelihood approach to displacement estim
tion can be implemented for strain imaging through lea
squares techniques.

The amount of compression we apply depends on
ability to balance the requirements for~a! high coherence
between pre- and post-compression echo fields,~b! accurate
displacement estimation, and~c! high strain contrast betwee
background and targets. Large compressions increase o
contrast for strain but decrease waveform coherence par
larly if cross correlation is the only displacement estimat
We also know from experience that choosing a compres
geometry and boundary restraints that yield a uniform str
field in the medium being imaged reduces decorrelation
rors and simplifies the resulting strain patterns. The ch
lenge for designing bioelasticity imaging systems is to co
trol a large number of coupled variables that influence t

e
u

14217(3)/1421/14/$17.00 © 2000 Acoustical Society of America



g

n
ve

lo

y
of
e

m

in
h
ig
di
wn
n
en
o

n
v

go
th
i

ra
re
m
a

e

, i
o

c
ea

th
n

t
es

e-
rgy

-

ing

ative
ted
as a

lter.

d-

-
l
m
the
n

ore

ul-
r a
To

f the
ati-
l is
bu-
performance. Yet most of what is known about strain ima
ing is empirical.

An excellent introduction to signal analysis for motio
estimation in bioelasticity imaging is found in the extensi
literature on time delay estimation for sonar and radar31,32

and for blood velocity estimation.33,34 These works explore
velocity and range estimation for spread target, spread ve
ity situations using wide-band signals~total bandwidths be-
tween 20% and 100%!. Our study extends the conditions b
analyzing wide-band maximum-likelihood estimation
slowly fluctuating~i.e., strain constant over a pulse volum!
spread targets that move in a plane or volume.

Specifically, this paper investigates a maximu
likelihood approach to displacement and strain estimation
provide a rigorous strategy for designing and evaluat
strain image formation algorithms and instrumentation. T
goals are to find principles that guide experimental des
and predict error bounds. Our viewpoint is from the tra
tional time-delay estimation literature where much is kno
about motion detection, albeit largely in one dimension a
without signal decorrelation. We first describe a compreh
sive ultrasonic waveform model that includes deformation
the scattering medium consistent with static compressio
biological tissues. Second, the concept of coherence is de
oped for strain imaging. Coherence is at the core of al
rithm design and performance assessment. Third,
maximum-likelihood strategy for displacement estimation
developed. Fourth, error bounds for displacement and st
estimates are found, verified with simulation, and compa
with phantom experiments. The results are a rigorous fra
work for future developments of strain imaging using ultr
sound.

I. ULTRASONIC WAVEFORM MODEL

We model an ultrasonic echo waveformr (x) as the sum
of a random processr̄ (x), which we refer to as the noise-fre
echo signal, and a signal-independent noise processn(x).
Each is a function of position~boldface! x5(x1 ,x2 ,x3) t, a
vector of Euclidean 3-space. The transpose ofx is indicated
by xt. For incident plane waves and far-field observation
is well known that the scattered pressure from a rand
medium is the sum of spherically diverging waves.35 How-
ever, modeling echo signals recorded during a pulse-e
experiment requires that we also include the point-spr
function for the imaging system.

A. Echo signals

An echo signal may be described as a function of
scattering amplitudeF~u! and pulse-echo transfer functio
H̃(u)36 at spatial frequencyu,37

r̄ ~x!5F21$H̃~u!F~u!%, ~1!

whereF$h̃(x)%5H̃(u) is the forward 3-D Fourier transform
of the pulse-echo point-spread functionh̃(x) and
F21$H̃(u)%5h̃(x) is its inverse.

The amount of acoustic energy scattered depends on
microscopic distribution of three coupled tissue properti
1422 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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mass densityr~x!, bulk compressibilityk~x!, and specific
acoustic impedancez(x). For local plane wavesz(x)
56Ar(x)/k(x). Specifically, the scattering amplitude d
scribes a spatial-frequency distribution of scattered ene
from the randomspatial fluctuationsin mass densityDr~x!/
r~x!, compressibilityDk(x)/k0 , and impedanceDz(x)/z0

according to35,38

F~u!5pu1
2FH Dk~x!

k0
2

Dr~x!

r~x! J
522pu1

2FH Dz~x!

z0
J 5

1

2pz0
FH ]2z~x!

]x1
2 J . ~2!

The spatial-frequency componentu1 corresponds to the spa
tial coordinate parallel to the axis of the ultrasound beamx1 ,
andk0 andz0 are the spatial averages of the correspond
quantities. To find the final form of Eq.~2!, we used the
relation Dk(x)/k02Dr(x)/r(x)522Dz(x)/z0 and the de-
rivative theorem for Fourier transforms.39 The equation
shows that sound is scattered wherever the second deriv
of the acoustic impedance in the direction of the transmit
beam axis is nonzero. Scattering may be considered
high-pass filter of the object functionz, attenuation as a low-
pass filter, and the point-spread function as a band-pass fi
Combining Eqs.~1! and ~2!, we find

r̄ ~x!5
1

2pz0
E

2`

`

dx8h̃~x2x8!
]2z~x8!

]x18
2

5@h^ z#~x!, where h~x!,
1

2pz0

]2h̃~x!

]x1
2 . ~3!

The symbol̂ denotes 1-D, 2-D, or 3-D convolution depen
ing on the dimension ofx. While h is deterministic,z is an
ergodic, zero-mean, Gaussian random process.

The final form of Eq.~3! was introduced to strain imag
ing by Bertrand and colleagues27,40 to relate the echo signa
directly to the impedance distribution. Therein, signals fro
a deformed scattering medium can be written in terms of
object functionz(x) through a coordinate transformation o
x. The quantityh is the sensitivity function. It includes the
point-spread function of the ultrasound system, but, m
precisely, it is the mapping between the object functionz and
the echo signalr̄ . Notice that for an ideal imaging system
whereh̃(x)5d(x), the Dirac delta function, then

r̄ ~x!5
1

2pz0

]2z~x8!

]x18
2 U

x85x

.

B. Object deformation and coordinate transformation

Strain is estimated through a process that correlates
trasonic waveform segments recorded before and afte
static stress field is applied to the medium being imaged.
be able to evaluate strain estimators, we need a model o
ultrasonic waveform that is both accurate and mathem
cally tractable. An essential component of such a mode
the ability to express coordinates of the impedance distri
tion before deformation, labeledx̃, in terms of those after
deformation,x, viz., z( x̃(x,t j )) where
1422Insana et al.: ML strain imaging
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x̃~x,t j !5~ x̃1~x1 ,x2 ,x3 ,t j !,x̃2~x1 ,x2 ,x3 ,t j !,

x̃3~x1 ,x2 ,x3 ,t j !! t,

j 50,1,2,..., andx̃(x,t0)5x. The time variable denotes th
waveform field recorded during thejth compression at time
t j . In this analysis single-compression strain images
studied:t0 indicates the time of recording for the precom
pression waveform field andt1 is the time of recording fol-
lowing the first compression. However, the analysis is ea
extended to multicompression techniques. The correspo
ing waveforms, expressed in the post-compression coo
natesx, at eacht j are given by

r ~x,t j !5 r̄ j~x!1nj~x!

5F ES
dx8h~x2x8!z~ x̃~x8,t j !!G1nj~x!, ~4!

where S is the region of support as discussed below a
defined as usual.41 Noise processesnj (x) are signal indepen
dent, zero-mean, bandpass white, and Gaussian with po
spectral densityGn , i.e.,

E$n* ~x!z~x!%50, E$n~x!%50,

E$n* ~x!n~x8!%5Gnd~x2x8!,

wheren* is the complex conjugate ofn andE$¯% denotes
expectation.42

At time t0 , Eq. ~4! reduces tor (x,t0)5@h^ z#(x)
1n0(x), the pre-compression echo waveform. Att1 , the
post-compression acoustic impedance field is described
z( x̃(x,t1)) that explicitly relates the pre-compression po
tion of the impedance fieldx̃ to the post-compression pos
tion x. We refer to the set of radio-frequency~rf! waveforms
in a scan plane acquired at frame timet j as anecho field.

An affine mapping betweenx̃ and x is defined by the
linear transformation matrixA, the translation vectorta , and
the equations

x~ x̃,t j !5Ax̃1Ata

x̃~x,t j !5A21x2ta
for j >0, ~5!

where

A5S ]x1

] x̃1

]x1

] x̃2

]x1

] x̃3

]x2

] x̃1

]x2

] x̃2

]x2

] x̃3

]x3

] x̃1

]x3

] x̃2

]x3

] x̃3

D
~0,t j !

, ta5S ta,1

ta,2

ta,3

D
t j

. ~6!

A andta are implicit functions oft j since the transformation
at any x̃ varies for each level of compression; e.g., atj 50,
ta50, andA5I , the identity matrix. Another example is th
deformation of a homogeneous and incompressible~Pois-
son’s ratio .0.5! medium, where the object is uniforml
squeezed by a small amount along thex1-axis. In this case,
the deformation may be described as a scaling of the e
coordinates, andA is diagonal with nonzero elementsA11

512s, A225A3351/A12s.11s/2. If Eqs.~5! and~6! are
to accurately represent the effects of strains, two conditions
1423 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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must be satisfied: the mapping fromx̃ to x must be linear
over S, and the components of the transformation mat
must be linear functions of strain as in the example abo
Both conditions are satisfied if the applied deformations
small.

Many biological tissues are linear-elastic and inco
pressible for small deformations.24 Shear modulus is the ma
terial property that describes the deformation of an increm
tal volume into an equal volume of altered shape. A volu
cannot be transformed into a plane, a line, or a point by
operation, so the matrixA must have rank 3. The mappin
from one space to the other is one to one, the inverseA21

exists, and the Jacobian of the forward transformation, wh
is the determinant ofA, detA, is nonzero. Furthermore, fo
incompressible media, detA51, which means the volume i
conserved. Equation~5! is critical for describing how physi-
cal deformation of the object affects coherence between
pre- and post-compression waveforms. In our experie
with tissuelike media, deformations are often spatia
smooth, particularly over the dimensions of the ultraso
pulse volume. So the first line of Eq.~5! may be considered
a first-order Maclaurin series expansion ofx( x̃,t j ). It is an
accurate approximation ofx in a neighborhood ofx̃50. The
deformation of a large object region in a strain image may
described by segmenting echo fields into neighborhoods
determining the first-order Maclaurin series for each~Fig. 1!.

C. Waveform warping

Our original deformation model was limited to scaling.43

Large displacement errors were found when using corr
tion techniques if either of the signals to be cross correla
were scaled relative to the other. To minimize the effects
scaling deformation on displacement estimation, wavefor
were compressed and expanded—companded—in one30,43

two,26 or three44 dimensions prior to correlation. The purpos
was to eliminate the scaling component of deformation o
the dimensions of the correlation data kernel size and lar
Companding significantly reduces strain noise whene
scaling is the principal deformation.

For more general types of motion, wewarp the pre-
compression echo field prior to cross correlation.29 Warping
may be achieved by applying the transformationx( x̃,t0)
5Bx̃1Btb to r ( x̃,t0) to find r (B21x2tb ,t0). The criterion
for selectingB and tb is that they maximize the magnitud
squared coherence function defined in Eq.~12! below. Using
the notation of Eq.~5! and the post-compression coordinat

FIG. 1. Deformation of an elastically uniform medium.
1423Insana et al.: ML strain imaging
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x, the waveforms for single-compression static strain im
ing using pulse-echo ultrasound signals, Eq.~4!, may be
written as

r ~x,t0!5@h^ z#~x!1n0~x!, Pre

r 0~x!,r ~B21x2tb ,t0!,

5F ES
dx8h~B21x2tb2x8!z~x8!G

1n0~B21x2tb!, Warped Pre

5 r̄ 0~x!1n0~B21x2tb!, ~7!

r 1~x!,r ~x,t1!

5F ES
dx8h~x2x8!z~A21x82ta!G1n1~x!, Post

5 r̄ 1~x!1n1~x!.

Matrix A is a linear transformation that describes the phy
cal deformation of the impedance field from a force appl
to the object, andB is the linear transformation that describ
the warp applied to the precompression echo field thro
signal processing. Eq.~7! is illustrated in Fig. 2.

Warping cannot fully restore lost coherence even
noise-free waveforms. First, the sensitivity functionh intro-
duces a null space45 in which small-scale object deforma
tions cannot be observed using echo waveforms. Co
quently, echo formation and object deformation are
commutative operations~Fig. 2!. Second, a typical strain im
age is generated from a plane of echo data. WhileA is given
by Eq. ~6!, B has the form

B5S ]x1

] x̃1

]x1

] x̃2
0

]x2

] x̃1

]x2

] x̃2
0

0 0 1

D , tb5S tb,1

tb,2

0
D . ~8!

Here too is a null space that reduces coherence in a ma
that cannot be recovered by signal processing. The first c
for coherence loss is minimized using highly focused, h
bandwidth ultrasound pulses. The second cause is minim
by finely sampling data from a volume instead of a plane
restricting all motion to the scan plane. Nevertheless,
show below that filtering and cross correlatingr 0 and r 1 is
the maximum-likelihood strategy for estimating displac
ment. Equation~7! extends our previous 1-D waveform
model46 to three dimensions.

FIG. 2. Ultrasonic waveform model of Eq.~7!.
1424 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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D. Definitions

A few important quantities and relations well know
from the literature are stated below without proof and in t
notation of this paper.

We assume 2-D echo fields,r j (x), j 50,1, are acquired
from the object in a rectangular region defined by the setS of
measureS8.41 The Fourier series coefficient estimatesR̂jk of
the 2-D echo field are47

R̂jk5
1

S8
E

S
dxr j~x!e2 i2puk

t x. ~9!

Wave vectorsuk define points on an infinite 2-D grid.48 For
convenience, the two integer indices required to define
grid are lumped into a single indexk51,...,N that enumer-
ates allN frequency points withinS.49 R̂jk is a complex,
Gaussian random process because the real waveformr j (x) is
Gaussian.

The Fourier transform ofr j (x) is47

Rj~u!5 lim
S8→`

S8R̂jk5E
2`

`

dxr j~x!e2 i2putx, ~10!

whereu is a continuous 2-D spatial frequency variable. It h
been shown50,51that if the dimensions of the support functio
are large compared to those of the correlation area inr j plus
the translationta , then the cross power spectral density i

Gr 0r 1
~uk!5S82E$R̂0k* R̂1k8% ——→

S8,N→`

Gr 0r 1
~u!

5E$R0* ~u!R1~u!%. ~11!

If Gr 0r 0
(u) and Gr 1r 1

(u) are the autospectral densitie
then the complex coherence and magnitude squared co
ence~MSC! functions are, respectively,

g r 0r 1
~u!,

Gr 0r 1
~u!

AGr 0r 0
~u!Gr 1r 1

~u!
,

~12!

ug r 0r 1
~u!u25

uGr 0r 1
~u!u2

Gr 0r 0
~u!Gr 1r 1

~u!
,

where 0<ug r 0r 1
(u)u2<1.52

Finally, the Fourier transform of a single realization of
scalar random function whose vector coordinates underg
linear transformation and translation is given by

F$z~A21x2ta!%5detAZ~Atu!e2 i2putAta. ~13!

Related results are derived in Appendix A and in Ref. 27

II. POWER SPECTRAL DENSITY AND COHERENCE

The goal of this section is to express power spec
density functions of the pre- and post-compression wa
forms in terms of the signal model of Eq.~7!.
1424Insana et al.: ML strain imaging
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Assume two-dimensional echo fields are recorded us
a linear array transducer. For a rectangular support regioS
with dimensionsS85T1T2 ,41 we find from Eqs.~9! and~11!
that

E$R̂0k* R̂1k8%5
1

S82 ES
dxE

S
dx8f r 0r 1

~x,x8!

3ei2p~uk
t x2u

k8
t

x8!. ~14!

Using Eqs.~45! and~47! from Appendix A and the Wiener–
Kinchin theorem,53 the mean cross correlation function fo
the echo waveforms is25

f r 0r 1
~x,x8!,E$r 0* ~x!r 1~x8!%

5detA detBE
2`

`

djH~j!H* ~Btj!

3E$Z~Atj!Z* ~Btj!%

3ei2pjt~x82x2Ata1Btb!. ~15!
os
Eq

nc
ifi
w
fe
in
od
tio
t t

qs

1425 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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Notice thatr 0 and r 1 are individually stationary processe
but jointly nonstationary. Equations~14! and ~15! may be
extended to three dimensions to track motion within a sc
volume data set.44

Combining Eqs.~14! and ~15! and integrating with re-
spect tox andx8 we find

E$R̂0k* R̂1k8%5
detA detB

S8
E

2`

`

djH~j!H* ~Btj!

3E$Z~Atj!Z* ~Btj!%e2 i2pjt~Ata2Btb!

3T1

sinp~j12u1k!T1

p~j12u1k!T1

sinp~j12u1k8!T1

p~j12u1k8!T1

3T2

sinp~j22u2k!T2

p~j22u2k!T2

sinp~j22u2k8!T2

p~j22u2k8!T2
.

~16!

IncreasingT1 and T2 while holding uk and uk8 constant
yields54
E$R̂0k* R̂1k8%.H detA detB

S8
H~uk!H* ~Btuk!E$Z~Atuk!Z* ~Btuk!%e

2 i2puk
t
~Ata2Btb! for k85k

0 for k8Þk

. ~17!
s
the

em

C
n

e

Selection of harmonic frequencies, e.g.,u1k5k/T1 , is
sufficient to ensure that frequency components of the cr
spectral density are orthogonal. The approximation in
~17! approaches an equality as~a! S8 becomes large or the
other factors in the integrand do not vary over the freque
interval and ~b! the displacement becomes small, spec
cally, ta1!T1 . Weighting the data with an apodized windo
function correlates frequency components and can inter
with the orthogonality that must be achieved if data warp
followed by cross correlation is to be a maximum-likeliho
estimator, as discussed below. The orthogonality condi
depends only on properties of the measurement and no
object.

B. Autospectral density

Following the above development, and combining E
~11!, ~A3!, and~A5! yields

E$R̂0k* R̂0k8%55
(detB)2

S8
(uH(Btuk)u2E$uZ(Btuk)u2%

1E$uN̂0Bku2%) for k85k

0 for k8Þk

,

~18!

E$R̂1k* R̂1k8%55
1

S8
((detA)2uH(uk)u2E$uZ~Atuk)u2%

1E$uN̂1ku2%) for k85k

0 for k8Þk

.

s-
.

y
-

re
g

n
he

.

For white noise,E$uN̂0Bku2%5E$uN̂1ku2%5Gn /S82. Equa-
tions ~17! and ~18! show that the spectral density function
of the pre- and post-compression echo fields depend on
pulse-echo transfer function of the ultrasonic imaging syst
via H, the physical deformation viaA and ta , and the ap-
plied warp viaB andtb .

C. Complex coherence

The next section will show the importance of the MS
function for modeling the performance of strain imaging. A
expression for MSC is found by substituting Eqs.~17! and
~18! into Eq. ~12!. For a continuous frequency variable, w
find

ug r 0r 1
~u!u25

ugz0z1
~u!u2SNR~u!

11SNR~u!
, ~19!

where

ugz0z1
~u!u25

E$Z~Atu!Z* ~Btu!%E$Z* ~Atu!Z~Btu!%

E$uZ~Atu!u2%E$uZ~Btu!u2%
~20!

is the MSC for the object function,

SNR~u!,
S/N0~u!S/N1~u!

11S/N0~u!1S/N1~u!
~21!

is the net signal-to-noise ratio,55 and
1425Insana et al.: ML strain imaging
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S/N0~u!5
uH~Btu!u2E$uZ~Btu!u2%

E$uN0~Btu!u2%
,

~22!

S/N1~u!5
~detA!2uH~u!u2E$uZ~Atu!u2%

E$uN1~u!u2%

are channel signal-to-noise ratios corresponding to
warped pre- and post-compression echo waveforms, res
tively. The echo waveform MSC is the frequency-space a
log to the correlation coefficient. It depends on the obj
function MSC and SNR~u! that includes properties of th
imaging system, scattering medium, and noise.

MSC defines the similarity betweenr 0 andr 1 . Intuition
tells us that it will be easier to measure displacement ifr 0 is
similar to r 1 , e.g., rigid-body displacement. More intuitio
about Eq.~19! is found through examples. First, in a simp
ideal case, the channel signal-to-noise ratios are large a
frequencies in the bandwidth,S/N0.S/N1@1, and we com-
press the object a small amount~,1% of its size! and warp
the waveforms accordingly;A5B.I . Then SNR(u)
.0.5S/Nj and ug r 0r 1

(u)u2.1. Low-compression strain im
ages are contrast limited. In a second, more complica
ideal situation, we physically deform the object a substan
amount, say 5% to 10%, to ensure ample strain contr
Then we apply the perfect warp, i.e.,B5A. In this case,
ugz0z1

u2.1 and yetug r 0r 1
u2,1 becauseS/N0ÞS/N1 unless

all scatterers are resolved by the ultrasonic imaging sys
such thatuH(Btu)u2.uH(u)u2 over all frequencies for which
uZ(u)u2 is nonzero. Unfortunately the bandwidth of the o
ject response is usually much broader than that of the im
ing system, and the resulting null space leads to a los
coherence even for a perfect warp. High-compression st
images are noise limited. Third, if the warp does not ma
the physical deformation,BÞA, then coherence is lost re
gardless of SNR~u! becauseugz0z1

u2,1. Ultrasonic attenua-
tion reduces coherence only at frequencies whereS/Nj@” 1.
We show in the next section that accurate displacement
timates require that we design the experiment and image
mation algorithm to achieve MSC close to one.

III. MAXIMUM-LIKELIHOOD DISPLACEMENT
ESTIMATION

The maximum-likelihood~ML ! estimator for displace-
ment selects the estimatet̂ that maximizes the value of th
likelihood functionp(R̂uu),56,57 or a monotonic transforma
tion of p(R̂uu). u is a vector of all unknown real paramete
that affect the data, viz., the elements ofA, B, ta , tb , uHku2,
E$uẐjku2%, andE$uN̂jku2%. It is convenient to define the com
plete data vectorR̂5(R̂01,R̂11,...R̂0k ,R̂1k ,...R̂0N ,R̂1N) t of
length 2N. It interlaces Fourier-series coefficient pairs fro
the warped pre- and post-compression echo fields over aN
frequencies.51 Since each value ofR̂0k andR̂1k is a complex,
Gaussian random variable, the likelihood function is mu
variate, complex, and Gaussian in 2N dimensions:

p~R̂uu!5
S84N

~2p!2N det~Q!
expS 2

S82

2
R̂†Q21R̂D , ~23!
1426 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
e
ec-
a-
t

all

d
l

st.

m

g-
of
in
h

s-
r-

-

whereR̂† is the complex conjugate transpose~adjoint! of R̂,
E$R̂%50, and

Q,S82E$R̂R̂†%

is a spectral density matrix. The effects onR̂ of object de-
formation, translation, rotation, and data warping are co
pletely specified byQ.

The 2N32N Hermitian matrixQ may be thought of as
anN3N block-diagonal matrix of 232 Hermitian submatri-
cesQkk8 . Since the frequency components are orthogon
Qkk85Qkdkk8 , where dkk8 is the Kroneker delta function
and50

Qk5S Gr 0r 0
~uk! Gr 0r 1

* ~uk!

Gr 0r 1
~uk! Gr 1r 1

~uk!
D . ~24!

Each of theN submatriciesQk5S82E$R̂kR̂k
†%, where R̂k

5(R̂0k ,R̂1k), are statistically independent. Also,

detQk5Gr 0r 0
~uk!Gr 1r 1

~uk!~12ug r 0r 1
~uk!u2!

and

Qk
21

5S 1

Gr 0r 0
~uk!

2g r 0r 1
* ~uk!

AGr 0r 0
~uk!Gr 1r 1

~uk!

2g r 0r 1
~uk!

AGr 0r 0
~uk!Gr 1r 1

~uk!

1

Gr 1r 1
~uk!

D
3~12ug r 0r 1

~uk!u2!21. ~25!

In practice, waveforms always contain noise, so
2ug r 0r 1

(uk)u2).0 andQk
21 exists.

The logarithm of the likelihood function is

ln p~R̂uu!54N ln S822N ln 2p2 ln detQ2
S82

2
R̂†Q21R̂.

~26!

The first three terms of Eq.~26! can be ignored since they ar
independent ofta and weakly dependent onA. Expanding
the last term, we find

ln p~R̂uu!.2
S82

2 (
k51

N
1

12ug r 0r 1
~uk!u2 F uR̂0ku2

Gr 0r 0
~uk!

1
uR̂1ku2

Gr 1r 1
~uk!

2
R̂0k* R̂1kg r 0r 1

* ~uk!

AGr 0r 0
~uk!Gr 1r 1

~uk!

2
R̂0kR̂1k* g r 0r 1

~uk!

AGr 0r 0
~uk!Gr 1r 1

~uk!
G . ~27!

Again, the first two terms in the square brackets are wea
dependent on the motion parameters and therefore ca
safely ignored for our purposes. The remaining two ter
may be written as
1426Insana et al.: ML strain imaging
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ln p~R̂uu!.S82(
k51

N

Re$R̂0k* R̂1kW
2~uk!

3e2 i2puk
t
~Ata2Btb!%, ~28!

where Re$¯% is the real part of the argument and

W2~uk!5
ug r 0r 1

~uk!u

AGr 0r 0
~uk!Gr 1r 1

~uk!~12ug r 0r 1
~uk!u2!

is a real function of frequency. For largeS8, Eq. ~11! can be
used to express the log-likelihood function of Eq.~28! as an
integral over a continuous frequency variable,

ln p~R̂uu!.S8E
2`

`

du Re$R0* ~u!R1~u!W2~u!

3e2 i2put~Ata2Btb!%. ~29!

The first factor in the braces of Eq.~29!, R0* (u)R1(u), is
the frequency-space representation of the cross correla
between echo waveformsfor a specific data kernel. The sec-
ond factor,W2(u), is a filter function that weights the Fou
rier coefficients of the data based on coherence. The t
~phase! factor is a function of the physical displacementAta

and warp displacementBtb . If we write

R0* ~u!R1~u!5Ĝr 0r 1
~u!

5uĝ r 0r 1
~u!uei2putt̂AGr 0r 0

~u!Gr 1r 1
~u!,

~30!

whereGr 0r 1
(u)5E$Ĝr 0r 1

(u)%, then

ln p~R̂uu!.S8E
2`

`

du
uĝ r 0r 1

~u!uug r 0r 1
~u!u

~12ug r 0r 1
~u!u2!

3Re$e2 i2put~Ata2Btb2 t̂!%. ~31!

ML estimates of displacement are those that sat
] ln p(R̂uu)/] t̂50. Equation~29! is one way to view the ML
strategy:~a! Warp the echo fields in a way that maximiz
the coherence betweenr 0 and r 1 ~Fig. 2!. ~b! Increase the
relative weighting of frequency components with the high
coherence usingW. ~c! Cross correlater 0 andr 1 to find t̂ at
the peak value and add toBtb . Hence, the ML strategy fo
displacement estimation in acoustic strain imaging~Fig. 3! is
consistent with the generalized cross correlator approach

FIG. 3. Generalized cross correlator and strain estimator. The quantityv~x!
is a window function.
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scribed by Knapp and Carter if it is extended to higher s
tial dimensions.25,50 Maximizing waveform coherence als
maximizes the peak of the cross correlation function.

The phase factor in Eq.~31! is unity at all frequencies
only when the estimate is accurate:t̂1Btb5Ata . Other-
wise, motion along all three axes affects displacement e
mates along each axis, and the integrand becomes an o
lating function of frequency with decreasing envelope. T
oscillations, which are about zero, increase in frequency
Ata2Btb2 t̂ deviates further from zero, dramatically redu
ing the value of the log-likelihood function. The mean lo
likelihood function is maximum whenE$t̂%5Ata2Btb

50, A5B.I , and ta5tb , which is also a situation tha
provides uninteresting strain images. The challenge
medical imaging applications is to achieve maximu
likelihood estimation for displacement in less optimal b
more interesting situations.

A. Relationships

The log-likelihood function of Eq.~29! is related to im-
portant estimation criteria found in the literature. By beg
ning the derivation with Fourier coefficients of the data, E
~29! becomes the characteristic function ofl r , the classical
log-likelihood function defined by Van Trees for zero-me
random signals:31

l r~u!5F21$ ln p~R̂uu!%

5CE
2`

`

dyE
2`

`

dxE
2`

`

dx8 Re$r 0* ~y2x!w~x!

3w~2x8!r 1~Btb2Ata1y2x8!%, ~32!

wherew(x)5F21$W(u)% is a filter function andC is a con-
stant. We can further define

r 0w~y!,E
2`

`

dxr 0~y2x!w~x!

and

r 1w~y!,E
2`

`

dxr 1~Btb2Ata1y2x!w~2x!

as filtered echo fields, and write Eq.~32! as a wide-band
ambiguity functionL:58

L~B,tb!5ReH E
2`

`

dyr 0w* ~y!r 1w~y!J . ~33!

The view from Eq.~33! is somewhat different from Eq.~29!
although the result is the same. Equation~33! suggests we
should filter the 2-D echo fields and cross correlate wa
forms in the six-dimensional space defined by the mot
parametersB11, B12, B21, B22, tb1 , tb2 . The peak value of
L gives joint ML estimates of the motion parameters su
that B5A andtb5ta .

B. Implementation

Least-squares techniques in elasticity imaging
common,16,29 but are they consistent with the ML approac
The principal criterion of least-squares algorithms is to mi
1427Insana et al.: ML strain imaging
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mize a matching energy functionEm . Using the filtered echo
waveforms of Eq.~33!, we express the matching energy a

Em5E dxur 0w* ~x!2r 1w~x!u2

5E dxur 0w~x!u21E dxur 1w~x!u2

22 ReH E dxr 0w* ~x!r 1w~x!J . ~34!

The first two terms on the right side of Eq.~34! are propor-
tional to the energy in the respective echo fields. In the
sence of severe echo decorrelation, for which no algorit
can successfully estimate motion, the energy terms are
proximately constant and not of interest. Minimizing th
matching energy is equivalent to maximizing the th
term—the wide-band ambiguity function of Eq.~33!. Conse-
quently, the ML estimator is implemented by the lea
squares approach to motion estimation.

The exact ML algorithm for strain imaging would ex
haustively search the relevant parameter space of the a
guity function for the largest peak value, and thus obt
estimates for each motion parameter. Given the model of
~5!, there are 2 parameters that define motion in 1-D e
fields,59 6 parameters for 2-D echo fields, and 12 parame
for 3-D echo fields. Sampling limitations of echo fields a
long computational times are practical considerations
restrict the extent of the search, so we compromise.

For example, the internal motion from a very small co
pression applied along the transducer beam can be app
mated by 1-D translation and scaling. The optimal solut
for this motion estimation problem is provided by the wid
band ML estimator for a spread target with constant d
placement gradient.34

Larger compression produces greater strain contr
which is desirable, but it also produces larger, more comp
motion and hence poses a greater challenge to the algori
Normally we impose boundary conditions that confine mo
ment to the scan plane of the linear array transducer. A bl
matching algorithm is used to measure local displacem
in two spatial dimensions, i.e.,Btb , for each data segmen
~Fig. 1!. The sampled waveforms are companded and t
cross correlated to estimate the residual displacementt̂.26

The nature of ultrasonic beamforming using a linear ar
results in echo fields that are sampled finely alongx1 and
coarsely alongx2 . The ambiguity function for this situation
is illustrated in Fig. 4~a!, wheretbi is the displacement esti
mate alongxi obtained from block matching. Equation~33!

FIG. 4. Sampled ambiguity functions using~a! companding and~b! warping
algorithms.
1428 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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for continuous data is represented by the shaded surface
same values for sampled data are shown as points. In
example, sparse sampling alongx2 leads to an estimation
error.

We reduce displacement estimation errors using a wa
ing algorithm that searches for an ambiguity function peak
a sparsely sampled six-parameter space.29 Our least-squares
warping algorithm begins with the same block-matching
gorithm used in companding and ends with a perturbat
technique that finely tunes the block-matching estimates.
serving the same two parameters of the ambiguity functi
we find in Fig. 4~b! that the perturbation component of th
algorithm extends the number of sampled points about th
determined using block matching. Hence we explain the
duced noise seen with warping versus companding as
consequence of a more thorough sampled ambiguity func
in the plane of the displacement vector@Fig. 4~a! versus Fig.
4~b!# and a modest extension of the search to include mo
parameters from the coordinate transformation matrixB ~not
shown in Fig. 4!.

IV. CRAMÉR–RAO VARIANCE BOUNDS

The log-likelihood function also provides a means f
determining a lower bound on estimation variance based
the information available from the data. The link between
two is the Fisher information matrixJ with components60

Jii 852EH ]2 ln p~R̂uu!

]u i]u i 8
J . ~35!

The variance of an unbiased estimateû i is bounded from
below by

var~ û i !5E$~ û i2u i !
2%>~J21! i i . ~36!

A. Displacement

Applying Eq. ~31! to Eqs.~35! and ~36! and assuming
each displacement is independent of other parameters iu,
the displacement variance about the true value61 and alongx1

is bounded by

var~ t̂1!5E$~ t̂12~Ata2Btb!1!2%

>
A12

2 Y11A22
2 Y2

~A11A222A12A21!
2Y1Y2

. ~37!

Y1 and Y2 are frequency integrals~Appendix B! that sum-
marize the effects of the pulse bandwidth and beam width
displacement variance, respectively.62 Both are functions of
the deformation parameters. Equation~37! is derived in Ap-
pendix B for two spatial dimensions where we assumeta

andA are independent. When the displacement and defor
tion parameters for 2-D motion are coupled, the size oJ
increases from 232 to 636, and the variance bound is re
duced if information is added. Reduced variance for jo
range-velocity estimation has been demonstrated.31,34

Equation~37! shows how object deformation and rot
tion reduce the information content of the echo signals w
regard to displacement estimation.
1428Insana et al.: ML strain imaging
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1. Example 1

An incompressible medium is deformed in two dime
sions by a scaling transformation, i.e.,A115A22

21 and Ai j

5Aji 50. The corresponding variance bound is

var~ t̂1!>
1

A11
2 Y1

5S 2S8A11
2 E

0

`

du~2pu1!2
ug r 0r 1

~u!u2

~12ug r 0r 1
~u!u2!D 21

.

~38!

The same result was found in one dimension by Knapp
Carter forA1151.50 Scaling increases the displacement va
ance directly through the factorA11 and indirectly by de-
creasing the MSC.

2. Example 2

An object is sheared either axially~alongx1) or laterally
~alongx2):

A5S 1 A12

0 1 D ~axial! and A5S 1 0

A21 1D ~ lateral!.

From Eq.~37! the corresponding variance bounds are

var~ t̂1!>
1

Y1
1

A12
2

Y2
~axial! and var~ t̂1!>

1

Y1
~ lateral!.

~39!

Rotation occurs whenA1252A21. SinceY1 andY2 are each
functions ofA, the relative effects of each motion are n
immediately obvious from Eqs.~38! and ~39!. We did com-
pare variances for axial and lateral shear using simulation63

and found that a given amount of axial shear always p
duces more displacement variance than the same amou
lateral shear.64 The largest variance for axial shear occurr
with the widest ultrasound beam.

For purposes of comparison and illustration, we n
examine specific examples of the scaling-only result for 1
signal and noise sequences that are described by the b
pass white, autospectral density functions

Gr̄ 0r̄ 0
~u!5Gr̄ 1r̄ 1

~u!5GsF rectS u2u0

U0
D1rectS u1u0

U0
D G

and

Gn0n0
~u!5Gn1n1

~u!5GnF rectS u2u0

U0
D1rectS u1u0

U0
D G

with center frequencyu0 , bandwidthU0 , and power spectra
densitiesGs andGn . The value of rect((u2u0)/U0) is unity
over U0 that is centered atu0 and zero elsewhere.

3. Example 3

With no deformation or rotation,ugz0z1
(u)u251 for all

u. In addition, assume the channel signal-to-noise ratios
equal and large,S/N0(u)5S/N1(u)5Gs /Gn@1, so that Eq.
~19! gives SNR(u)5Gs/2Gn . Combining Eqs.~19! and~38!
we find
1429 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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var~ t̂1!>S 4p2S8
Gs

2Gn
2E

u02U0/2

u01U0/2

duu2D 21

5S 4p2S8
Gs

Gn
U0u0

2S 11
U0

2

12u0
2D D 21

,

exactly the variance bound found by numero
investigators65 for passive radar and sonar systems66 at high
SNR and for time-independent time delay. Lacking deform
tion, this example is a trivial result for strain imaging.

4. Example 4

Given the assumptions above, but allowing the obj
function to decorrelate because of a scaling deformation,
ugz0z1

(u)u2<1, Eq. ~38! reduces to the result of Walker an
Trahey @Eq. ~20! in Ref. 67#. Converting our notation to
theirs, ugz0z1

(u)u2↔r2, Gs /Gn↔SNR2, S8↔T, u0↔(1/c0

1 ia0/2p)2 f 0 , andU0 /u0↔B. The two sets of results ar
compared in Sec. VI below.

The new contribution that Eq.~37! makes to the vas
existing literature on time-delay estimation is to reveal h
two-dimensional motions in the object couple to increa
displacement variance along one direction—that paralle
the ultrasound beam.

B. Strain

If the total displacement vector isv5 t̂1Btb , the Eule-
rian strain tensor is24

emn5
1

2 F ]vn

]xm
1

]vm

]xn
G

and the longitudinal strain along the beam axis is

s,e115
]v1

]x1
. ~40!

In practice, however, strain is estimated from the differen
equation

ŝ5
v1

~2!2v1
~1!

DT
, ~41!

where the superscript numbers in parentheses label the
tions of two displacement estimates from waveform s
ments along the beam that are separated by the axial dist
DT. By error propagation,

var~ ŝ!5
~var~ t̂1

~1!!1var~ t̂1
~2!!22 cov~ t̂1

~1! ,t̂1
~2!!!

DT2

.
2 var~ t̂1!

T1DT
. ~42!

The last form makes use of a conservative approximation
the covariance68 that was shown to be reasonably accurate69

The lower bound on strain error is found by combining Eq
~37! and ~42!.
1429Insana et al.: ML strain imaging
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V. METHODS

A. Simulations

We explored the consequences of Eqs.~37! and~42! for
strain imaging through the use of 2-D echo waveform sim
lations. Echo fields from a linear array were generated fr
their Fourier-domain representations, Eqs.~A3! and ~A5!.
We setB5I and ta5tb50 to isolate the effects of objec
deformation on displacement variance and to be consis
with the assumptions leading to Eq.~37!. Quantitiesz(x) and
nj (x) were assigned samples of a Gaussian, white rand
process as given byN(0,S/N(u0)) andN~0,1!, respectively.
S/N(u0)5100 ~20 dB! for all the data. This object function
simulates scattering from a medium with randomly po
tioned particles, each smaller than the smallest waveleng
the pulse, and with sufficient number density to produ
fully developed speckle. The noise function represents e
tronic fluctuations and quantization errors. The 2-D poi
spread function was a Gaussian-modulated sine wave

h̃~x!5~2pL1L2!21 expS 2
1

2 S x1
2

L1
2 1

x2
2

L2
2D D sin~2pu0x1!.

L1 and L2 are spatial parameters that determine the pu
length and beam width, respectively. The temporal car
frequency of the pulse wasu0c0/25 f 055 MHz. The effec-
tive temporal bandwidth was computed assuming
expression70

*0
`du1uH̃~u1!u2

uH̃~u0!u2 5
c0

4ApL1

.

Setting 2L1 /c050.1ms gave an effective bandwidth of 2.
MHz ~56%!. Including the above details into Eq.~A3! yields
for two-dimensional data structures

R0~u1 ,u2!5H~u1 ,u2!Z~u1 ,u2!1N0~u1 ,u2!, ~43!

where

H~u1 ,u2!5C8u1
2e2a sgn~u1!e22p2~ uu1u2u0!2L1

2
e22p2u2

2L2
2
,

whereu1 andu2 are spatial-frequency variables correspon
ing to x1 andx2 , respectively, andC8 is a complex constant
The attenuation parametera52da0u f u/20 loge increases lin-
early with temporal frequencyf. The attenuation constan
a050.05 dB mm21 MHz21 is valid over ad540 mm depth.
The high-pass filtering effects of Rayleigh scattering a
low-pass filtering effects of attenuation in Eq.~43! nearly
cancel for Gaussian pulses, as shown in Appendix C.
though scattering and attenuation were included in th
simulations, they could have been ignored without a sign
cant loss of accuracy.

Pre-compression echo waveforms were computed u
r 0(x)5F21$R0(u)%. The function sgn(u1)5uu1u/u1,
sgn~0!50, ensures thatr 0 is analytic. Post-compression ech
waveforms were found in a similar manner using Eq.~A5!
and the appropriate linear transformation matrixA. Wave-
forms were oversampled at 400 Msamples/s along the u
sonic beam axis to minimize errors introduced by sampli
Each waveform in the echo field was simulated assumin
lateral aperture shift of 0.18 mm. Adjacent waveforms w
1430 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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correlated through the Gaussian lateral beam parameterL2 in
Eq. ~43! to simulate the experimental measurement con
tions described below.

Displacements were measured from 5-ms segments of
simulated echo data using cross correlation butwithout
warping ~B5I !. In each case the displacement was ze
(ta50) and the object deformation, i.e., elements ofA, were
known.

B. Measurements

We also examined the efficiency of the cross correla
for displacement estimation using phantom measuremen

A 5-MHz linear array~Q2000, 5L45, 60% bandwidth
Siemens Ultrasound, Inc.! was used to scan a graphite
gelatin phantom. In the scan plane, the array was dyna
cally focused on receive with a constant relative aperture
f /2. Perpendicular to the scan plane, the focal proper
were fixed atf /4.5 and the aperture was 10 mm. The li
density of the scan plane was 4.9 A-lines/mm, so the lat
sampling interval was 0.20 mm. Echoes were recorded a
Msamples/s for an axial sampling interval of 0.017 m
Each scan plane spanned approximately 40340 mm ~200
A-lines32340 samples/A-line! and was centered at a dep
of 45 mm. At the 45-mm depth, the measured lateral a
elevational beam widths~26 dB! were 0.7 mm and 1.5 mm
respectively. The correlation coefficient was 0.8860.03 be-
tween adjacent A-lines and 0.6360.05 between every third
A-line.

The phantom was a graphite-gelatin block of dimensio
100 mm3100 mm374 mm ~height!.71 The block was elas-
tically homogeneous on any scale larger than the pulse
ume. It was placed on an immovable surface and compre
from above with a rigid plate in which the array transduc
was flush mounted. The two side surfaces of the phan
parallel to the scan plane were restrained to prevent mo
out of the plane. The remaining two phantom surfaces w
free to move. All phantom surfaces were lubricated to e
courage free-slip boundary conditions.

The phantom block was warmed to 21 °C, pre-load
4% of its 74 mm height under computer control, and ele
tronically scanned to obtain the pre-compression echo fi
It was then further compressed, held, and re-scanne
1.2%, 2.4%, and 3.6% of its pre-loaded height~71 mm!. In
each case, we selected a sub-region of 50 A-lines35.7 ms
~256 pts! near the center of the echo field where there w
minimal lateral motion. The pre- and post-compress
waveforms were shifted to remove any time delay (tb5ta)
but not warped~B5I !. Consequently,E$t̂1%.0 and the de-
formation was predominantly axial scaling with minimal la
eral scaling, shearing, or rotation. Displacement was m
sured for every fourth waveform in the sub-region usi
cross correlation. The variance var(t̂1) was computed from
16 uncorrelated echo segments 5.7ms in duration.

The following displacement variances for simulated a
experimental data represent those for unbiased, zero-m
estimates that could result from residual deformation a
warping.
1430Insana et al.: ML strain imaging
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VI. RESULTS AND DISCUSSION

Simulated echo data provide us the means to comp
the analytic predictions of Eq.~37! for arbitrary spectra and
verify the results for elementary motions. Experimental ec
data show us theefficiencyof the cross correlator for dis
placement estimation under controlled conditions using
suelike media and clinical ultrasonic instrumentation.

Figure 5 shows the analytic results for displacem
variance as a function of the applied strain up to 4%. Sim
lated data were used to estimateug r 0r 1

(u)u2 for each value of
applied strain. Results from 200 independent wavefor
were averaged to find each point plotted. Because the de
mation is limited to scaling, Eq.~38! applies. However, to
facilitate comparisons with predictions from the literatu
the Y1 integral was reduced to one dimension, alongu1 .
Extending the frequency integral in Eq.~38! to two dimen-
sions yields similar curves with slightly greater variances

The open circles labeledZ in Fig. 5 are the results for a
flat, band-pass signal spectrum and noise spectrum using
~38!. The asterisks labeledY show the results from Walke
and Trahey67 also for flat, band-pass spectra. Values in
cated by the solid line markedX are the results for a Gauss
ian echo spectrum and flat, band-pass noise spectrum u
Eq. ~38!. Gaussian signal spectra and flat band-pass n
spectra are representative of those for strain imaging in
logical media. As explained in the previous section,
channel signal-to-noise ratios at the center frequencyu0 and
the effective bandwidthsU0 for the flat and Gaussian signa
spectra were set equal. In general, however, the shape o
signal and noise spectra can influence the curves in Fi
because SNR is a function of frequency. It is a coincide
that the variances for flat and Gaussian signal spectra c
cide for realistic system and tissue parameters. The simila
of the results suggests that spectral shape is not a dom
factor determining variance for strain imaging.

The displacement variance at 0.1% strain is an impor
result. We routinely match scaling components of an app
strain using companding and warping methods to an ave
of 0.1%. Figure 5 shows that efforts to matchB to A closer
than 0.1% will not improve strain image noise since the p

FIG. 5. Predicted displacement variances.
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cision of the cross correlator does not change below 0.
applied strain. The precision of the cross correlator is high
in this low strain range. Assuming that62 standard devia-
tions of the displacement error is the tolerance for relia
measurements, the smallest measurable displacemen
0.1% applied strain under these typical measurement co
tions is 2A5.7431027 ms251.5 ns or 1.2mm. With respect
to the wavelength at 5 MHz, this is less than 3° of phase

In Fig. 6, the analytic results for the Gaussian sign
spectrum shown as the solid line in Fig. 5 are reproduced
the solid line labeled A. Figure 6 results represented by
open circles labeled B are the displacement variances m
sured using simulated echo data for axial scaling only,A11

512s. Agreement with the analytic results is nothing mo
than verification of programming. Results represented
3labeled C and by1labeled D are variances measured us
simulated echo data for axial and lateral scaling, where in
A11512s and A2251/2(12s), and in D, A11512s and
A2251/(12s). The former case represents unconstrain
motion in a central plane of a homogeneous, incompress
cube. The latter case is similar but includes boundary con
tions that prohibit any motion out of the plane. Decoheren
from in-plane motion lateral to the beam axis increases
displacement variance by orders of magnitude. Doubling
lateral motion by adding boundary constraints halves
strain at which the sudden increase begins. Because
Cramér–Rao approach describes errors based on the in
mation content of the waveforms, the analytic results
technique independent. Displacement variance increa
with aliasing caused by undersampling the data, particula
in nonaxial directions. Aliasing errors are not reflected
Eq. ~37!, where we assume the data are continuous with la
time-bandwidth product. The Crame´r–Rao approach estab
lishes the best-possible estimation performance and co
quently the standard by which the efficiency of real estim
tors is measured. Our simulated echo fields were sample
a rate of 400 Msamples/s to minimize sampling errors. Ty
cal experimental data are sampled at much lower rates
this case 45 Msamples/s, and interpolated.

Finally, phantom measurements are plotted in Fig. 6

FIG. 6. Predicted versus measured displacement variances~see Sec. VI!.
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the three values of applied strain indicated by the squa
and marked E. The most remarkable feature of the exp
mental results is the relatively high efficiency of cross c
relation for displacement estimation with 1.2% strain: T
variance measured in a tissuelike phantom is only 30% la
than the lower bound. Using the two-standard deviation
teria discussed above, the data point at 1.2% applied s
shows the precision for displacement to be 7.4 ns or 5.7mm.
The predicted variance was 4.4mm. This is the first experi-
mental evidence to suggest that cross correlation can b
efficient estimator of ultrasonic displacement in the Crame´r–
Rao sense when deformation is minimized through warp
Agreement between prediction and measurement was fo
despite subtle differences in the parameters used to gen
analytical results and phantom measurements. For the an
sis, the peak frequency was 5 MHz, the bandwidth was 5
the channel signal-to-noise ratio at the peak frequency
20 dB, the window length was 5ms, and the attenuation
coefficient slope was 0.5 dB cm21 MHz21. For the phantom
measurements the peak frequency was 4.2 MHz, the b
width was 60%, the channel signal-to-noise ratio at the p
frequency was 17 dB, the window length was 5.7ms, and the
attenuation slope was 0.4 dB cm21 MHz21.

VII. SUMMARY

A mathematical model is proposed to describe the ul
sonic waveforms recorded during strain imaging. From t
model, the ML strategy for displacement and strain estim
tion is derived. In addition, a lower bound on displacem
variance was found, verified using simulated echo data,
compared with experimental data obtained using a tissue
phantom.

The ML strategy for image formation is to find the glo
bal peak of the ambiguity function. We implement an a
proximation to the ML strategy by filtering waveforms
favor frequency components with the highest coherence
then warping the pre-compression echo field to match
physical deformation recorded by the post-compression e
field. Finally, warped pre-compression and post-compres
waveforms are cross correlated and the net displacem
field is differentiated along the direction of the ultrasou
beam axis to estimate strain. The ML approach to displa
ment and strain estimation is consistent with the general
cross correlator, ambiguity function, and least-squares
proaches described in the time-delay literature. It is poss
to implement exactly only when the spectral properties of
signal and noise are known and the data are oversample

In most practical situations, errors predicted by t
Cramér–Rao approach cannot be achieved because the
sumptions of continuous echo waveforms and large tim
bandwidth products are unrealistic for imaging. This va
ance bound ignores essential design issues relating n
spatial resolution and aliasing. Nevertheless, the ML strat
is a rigorous, broad framework for designing systems a
algorithms for strain imaging.
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APPENDIX A

The Fourier transforms of the echo signalsr 1(x) and
r 2(x) are derived below.

From Eq.~7!,

r 0~x!5 r̄ 0~x!1n0~B21x2tb!,

r 1~x!5 r̄ 1~x!1n1~x!.

Therefore,

r̄ 0~x!5E
2`

`

dx8h~B21x2tb2x8!z~x8!

5E
2`

`

dx8F E
2`

`

djH~j!ei2pjt~B21x2tb2x8!G
3F E

2`

`

dzZ~z!ei2pztx8G ,
5E

2`

`

djE
2`

`

dzH~j!Z~z!ei2pjt~B21x2tb!

3E
2`

`

dx8ei2p~z2j!tx8. ~A1!

The integral overx8 is d~j2z!. Substitutingu8t5jtB21 into
Eq. ~A1! and noting thatdj5detBdu8 we find

r̄ 0~x!5detBE
2`

`

du8H~Btu8!Z~Btu8!ei2pu8t~x2Btb!.

~A2!

The Fourier transform ofr̄ 0(x) is

R̄0~u!5E
2`

`

dxr̄ 0~x!e2 i2putx

5detBE
2`

`

du8H~Btu8!Z~Btu8!e2 i2pu8tBtb

3E
2`

`

dxei2p~u82u!tx

5detBH~Btu!Z~Btu!e2 i2putBtb,

and consequently

R0~u!5detB~H~Btu!Z~Btu!1N0~Btu!!e2 i2putBtb.
~A3!

Similarly, for r̄ 1(x),
1432Insana et al.: ML strain imaging
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r̄ 1~x!5E
2`

`

dx8h~x2x8!z~A21x82ta!

5E
2`

`

dx8F E
2`

`

djH~j!ei2pjt~x2x8!G
3F E

2`

`

dzZ~z!ei2pzt~A21x82ta!G ,
5E

2`

`

djE
2`

`

dzH~j!Z~z!ei2p~jtx2ztta!d~j2A21tz!,

5detAE
2`

`

djH~j!Z~Atj!ei2pjt~x2Ata!. ~A4!

The last form was found by noticing that the delta function
nonzero only atz5Atj and thatdz5detA dj. Finally,

R1~u!5detAH~u!Z~Atu!e2 i2putAta1N1~u!. ~A5!

Warping the data affects all components ofR0(u) whereas
the physical deformation affects only the object function
R1(u).

APPENDIX B

The Fisher information component that defines the low
bound on displacement variance measured along the u
sound beam, Eq.~37!, is derived below.

We assume the displacements are independent of o
parameters inu, 2-D object motion~plane-strain state!, and
2-D data structure~scan plane from a linear array!. Then,
from Eqs.~31! and ~35!,

2EH ]2 ln p~R̂uta!

]ta1
2 J

t̂5Ata2Btb

54p2S8E
2`

`

du
ug r 0r 1

~u!u2

~12ug r 0r 1
~u!u2!

~A11u11A21u2!2,

2EH ]2 ln p~R̂uta!

]ta2
2 J

t̂5Ata2Btb

54p2S8E
2`

`

du
ug r 0r 1

~u!u2

~12ug r 0r 1
~u!u2!

~A12u11A22u2!2,

2EH ]2 ln p~R̂uta!

]ta1]ta2
J

t̂5Ata2Btb

54p2S8E
2`

`

du
ug r 0r 1

~u!u2

~12ug r 0r 1
~u!u2!

~A11u11A21u2!

3~A12u11A22u2!.

Completing the squares and integrating, we find that te
linear in frequenciesu1 and u2 integrate to zero. Factoring
the components ofA out of the remaining integrals allow
the following simplifications:

J115A11
2 Y11A21

2 Y2 ,

J225A12
2 Y11A22

2 Y2 ,
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J125J215A11A12Y11A21A22Y2 ,

where

Y1,2S8E
0

`

du~2pu1!2
ug r 0r 1

~u!u2

~12ug r 0r 1
~u!u2!

,

~B1!
Y2,2S8E

0

`

du~2pu2!2
ug r 0r 1

~u!u2

~12ug r 0r 1
~u!u2!

.

The determinant of the Fisher information matrix is

detJ5~A11A222A12A21!
2Y1Y2 .

Finally, we arrive at Eq.~37!:

var~ t̂1!>~J21!115
A12

2 Y11A22
2 Y2

~A11A222A12A21!
2Y1Y2

.

APPENDIX C

We show that the sensitivity function for a Gaussi
point-spread function is approximately Gaussian. The fu
tion

H~ f , f 0 ,s!5C8u f ume2a sgn~ f !e22p2~ u f u2 f 0!2s2
,

f 0 ,s,a.0, ~C1!

is a 1-D temporal-frequency representation of the sensiti
function described by Eq.~43!. The high-pass factoru f um

defines the scattering function, where 0<m<2, m50 is for
specular reflection, andm52 is for Rayleigh scattering; the
low-pass factor exp~2a! defines attenuation losses; the r
mainder represents the point-spread function of a Gauss
modulated sine wave with center frequencyf 0 and pulse du-
ration s.

We find that

H~ f , f 1 ,s1!5C1 sgn~ f !e22p2~ u f u2 f 1!2s1
2

5 lim
s→`

H~ f , f 1 ,s!, ~C2!

where the constants

C15C8 f 1
me2ae22p2~ f 12 f 0!2s2

,

f 15
2a14p2s2f 01A16p2s2m1~a24p2s2f 0!2

8p2s2 ,

and

s15s
f 1

2e2a~ f 12 f 0!e2a2/8p2s2
e22p2~ f 12 f 0!2s2

1

4p2s2 S 11
a2

4p2s2D2 f 0

a

2p2s2 1 f 0
2

.

That is, for narrow-band transmission, the sensitivity fun
tion is Gaussian withs1.s and f 1 given above. It is also a
very good approximation for broadband transmission. F
example, let f 055 MHz, s50.1 ms ~effective bandwidth
52.8 MHz!, m52, and a52.3 @50.05 dB/mm/MHz
3~2340 mm!35 MHz/(20 loge)#. We find that f 1 / f 0

50.97, s1 /s51.11, and uH( f , f 0 ,s)2H( f , f 1 ,s1u/C1

,0.026. Consequently, we may use a 1-D Gaussian sens
ity function when the 1-D point-spread function is Gauss
without significant error. The situation can be more comp
cated when modeling the point spread function at higher s
tial dimensions.
1433Insana et al.: ML strain imaging
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