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Bayesian and Least Squares Approaches to
Ultrasonic Scatterer Size Image Formation

Pawan Chaturvedi, Member, IEEE, and Michael F. Insana, Member, IEEE

Abstract—Scatterer size images can be used to describe
renal microstructure and function in vivo. Such information
may facilitate early detection of disease processes. When
high range resolution is required, however, it is necessary to
analyze short data segments. Periodogram-based maximum
likelihood (ML) techniques for scatterer size estimation are
limited in these situations by noise and range-gate artifacts.
Moreover, when the input signal-to-noise ratio (SNR) of the
echo signal is small, performance is further degraded. If ac-
curate prior information about the approximate properties
of the object is available, it can be incorporated into the
solution to improve the estimates by reducing the number
of possible solutions. In this paper, use of prior knowledge
in scatterer size image formation is investigated. A max-
imum a posteriori (MAP) estimator, based on a random-
object model, and an iterative constrained least squares
(CLS) estimator, based on a deterministic-object model,
are designed. Their performances and that of a Wiener fil-
ter are compared with the ML technique as a function of
gate duration and SNR.

I. Introduction

Quantitative ultrasonic analysis of biological tissues
provides histological information that is not avail-

able with other non-invasive techniques. Scatterer size es-
timates, in particular, have demonstrated an ability to
quantify important properties of tissue microstructure and
function, in vivo. For example, measurements of tempo-
ral variations in scatterer size for a fixed tissue volume
[1],[2],[3],[4] and images of spatial variations in scatterer
size size at a given time [5],[6],[7] offer new opportunities
for studying disease processes. If these ultrasonic methods
can be developed into sensitive diagnostic tools, it may be
possible to analyze histological features non-invasively.

The relationships between acoustic measurements and
the microstructure of biological tissues are beginning to
be understood [8],[9],[10]. However, it is the sensitivity of
scatterer size estimates to changes in tissue microstructure
that will ultimately determine the diagnostic utility of this
approach. The challenge for scatterer size imaging is to
suppress the noise and yet maintain contrast and spatial
resolution sufficient to accomplish the diagnostic task.
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Visualizing targets in scatterer size images is sometimes
difficult [6] because tissues are random scattering media;
the coherent detection process produces speckle and re-
duces the time-bandwidth product. For example, 1–8 mm
range resolution is typical of a scatterer size image formed
in a C-scan plane from a volume set of echo data [11].
To estimate the scatterer size, the frequency spectrum
of each short-time waveform segment is analyzed inde-
pendently. Therefore, shorter waveform segments provide
fewer independent data samples in a fixed measurement
bandwidth, increasing the variance of scatterer size es-
timates [12]. Consequently, periodogram-based maximum
likelihood (ML) estimation techniques, such as those de-
scribed by us previously [11], generate noisy scatterer size
images. In the present study, we explore the possibility of
improving the detectability of scatterer size images by re-
ducing noise through the use of prior information about
the object being imaged.

Histological data from the literature provides the neces-
sary information for many normal and diseased organ sys-
tems. For example, in studying renal diseases, it is known
that the average glomerular size in a normal human is
approximately 210 µm [13], and that glomeruli undergo
hypertrophy at the onset of sclerosis [14]. Although the
accuracy of the quantitative data in different applications
is variable, we will show that even the most basic prior
information improves image quality. To demonstrate the
improvement, we study a known object and define perfor-
mance of the imaging system in terms of a contrast-to-
noise ratio (CNR).

Prior information is included in the estimation process
in two ways, depending on the nature of the object stud-
ied. In both cases, measured data are modeled as a linear
function of the object. The first approach is to consider
the object as stochastic [15],[16],[17]. Bayesian estimation
techniques form solutions that include information about
the object known prior to the measurement. Specifically,
the maximum a posteriori (MAP) approach is considered
in this work. The second approach is to consider the ob-
ject as deterministic [18],[19],[20],[21]. A least-squares al-
gorithm provides solutions that are constrained by the
prior information about the object. This is the well-known
constrained least-squares (CLS) approach to parameter es-
timation. MAP and CLS techniques both reduce to the ML
solution when confidence in the prior knowledge is low.

The following section summarizes the model of echo-
data formation that is the basis for the MAP and CLS
techniques. Details of the model are described in [12].
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II. Measurement Model

The measurement vector xt = {x[0], x[1] . . .x[m] . . . [N−
1]} is a time sequence of data samples recorded during
a pulse-echo experiment. (Row vector xt is the trans-
pose of column vector x.) We use the notation, X(k) =
F{x[m]} =

∑∞
m=0 x[m] exp (−imkc∆t) to indicate a

discrete-time Fourier transform of x, where ∆t is the sam-
pling interval, c is the speed of sound, k = 2πf/c is spatial
frequency, and f is temporal frequency. The measured fre-
quency responseX(k) is modeled as a tissue response func-
tion R(k) that has been filtered by the sensitivity function
H(k) according to the linear model [29],

X(k) = H(k)R(k) +N(k) , (1)

where N(k) is the Fourier transform of a zero mean, white,
Gaussian noise process with variance σ2

n. We use the no-
tation N (0, σ2

n) to indicate this Gaussian process.
The tissue function R(k) describes the spatial distribu-

tion of tissue scattering sites, and therefore is of princi-
pal interest in scatterer size estimation. The average scat-
terer size D represents the characteristic dimension of the
microanatomy that scatters ultrasound in the frequencies
within the measurement bandwidth. The relationship be-
tween R(k) and D is given by

E{R(k)} = exp
(
−k2D2/3.112) , (2)

This model for R(k) was selected to yield the acoustic
form factor F (k) = E{|R(k)|2} observed experimentally
for renal tissues [8],[11].
H(k) defines the sensitivity of the measurement spec-

trum to the tissue function at each k. For a Gaussian mod-
ulated sine-wave pulse incident on the tissue,

H(k) = k2 i

2

[
exp{−(k + k0)2σ2

h/2}

− exp{−(k − k0)2σ2
h/2}

]
, (3)

where k0 is the center frequency of the pulse and σh de-
fines the duration of the pulse. Equation (3) combines the
response of the measurement system with the reflectivity
properties of the medium; the latter is contained in the
multiplicative factor k2.

The objective is to estimate scatterer sizes D from the
echo data X(k) for each pixel in the image. Although there
is a linear relationship between X(k) and R(k), the rela-
tionship betweenR(k) andD is nonlinear, as seen from (2).
Consequently, our estimator is designed to first determine
an estimate of the tissue function R̂(k), and then deter-
mine the scatterer size estimate D̂. Specifically, (2) is used
to generate a family of modeled tissue functions {Rm(k)}
for the range of possible D. Comparing {Rm(k)} to R̂(k)
using regression analysis, we select D̂ from the model func-
tion Rm(k) that yields the minimum mean-squared error
(MSE). This two-step approach simplifies the analysis con-
siderably because of the linear relationship that exists be-
tween X(k) and R(k).

In the next section a MAP estimator of the tissue re-
sponse is developed. Prior knowledge about R(k), in the
form of a probability density function (PDF), is used to
estimate R̂(k).

III. Maximum A Posteriori (MAP) Estimator

The posterior conditional probability density of R(k)
given the measurement X(k) is p(R|X), and is described
by Bayes’ formula:

p(R | X) =
p(X | R)p(R)

p(X)
, (4)

where p(X | R) is the likelihood of the measurement given
a specific tissue function, and p(R) and p(X) are the den-
sity functions for the tissue and measurement, respectively.
The likelihood function describes information about the
tissue available from the data at frequency k. p(R) repre-
sents the accumulated knowledge of the tissue before data
were acquired, and therefore is known as the “prior.” It is
important to note that R is stochastic in this approach.
Stochastic properties of the measurements are represented
by p(X). It is reasonable to assume that p(X) is indepen-
dent of R, since the measurement process is independent of
the object. This scaling factor is necessary to give p(R|X)
the properties of a density function, but otherwise does
not affect the estimator.

Depending on the choice of the cost function, differ-
ent points on the posterior PDF may be selected to ob-
tain the desired estimate [17]. A popular choice is the
mode of the posterior PDF. The corresponding estimator
is known as the MAP estimator since it selects solutions
that maximize the posterior probability. Similarly, choos-
ing the mean value results in the minimum MSE estimator.
For Gaussian or other symmetric density functions, choos-
ing the mean, median, or mode yields the same estimate.
ML estimates are obtained by setting p(R) to be constant
with respect to R, indicating unavailability of any prior
information. In that situation p(R | X) ∝ p(X | R).

An expression for the MAP estimate of the tissue re-
sponse is obtained from (4) by specifying three important
density functions1:

p(N) = N (0, σ2
n) (noise)

p(X|R) = N (X,σ2
x) (likelihood) (5)

p(R) = N (R, σ2
R) (prior)

From (1), X = HR is the measurement averaged over
the noise ensemble for a fixed object and R is the en-
semble average of the tissue function. As shown below,

1In our model, R is real and even, and H is imaginary and odd.
Consequently, X is imaginary and the Gaussian likelihood and prior
density functions given by (5) are appropriate. However, if the ul-
trasonic attenuation in the scattering medium is significant, then R
and X are complex quantities, and the corresponding likelihood and
prior density functions involve circular Gaussian statistics [22]. Kay
[17] shows that the MAP and CLS estimators for the corresponding
complex quantities are analogous to those for purely real or purely
imaginary quantities.
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prior information about the object is incorporated into
the analysis through R. Since the noise and object are un-
correlated, σ2

x and σ2
n are equal, and are independent of k.

However, the finite size of the scatterers implies that the
power spectral density of the object function is not white,
i.e., σ2

R ≡ σ2
R(k).

Combining the negative logarithm of (4) with (5), we
find that, for each k,

− log p(R | X) =
1

2σ2
n

(X −HR)∗(X −HR)

+
1

2σ2
R

(R−R)2 + log p(X) , (6)

where ∗ denotes complex conjugate of the quantity. Each
quantity in (6) is a function of frequency except σ2

n.
The MAP estimator is obtained by differentiating (6)

with respect to R and setting the result equal to zero. After
algebraic manipulation, the MAP estimate for real R can
be shown to be

R̂MAP (k) =
H∗(k)X(k) + γMAP (k)R(k)
H∗(k)H(k) + γMAP (k)

, (7)

where γMAP (k) = σ2
n/σ

2
R(k) can be interpreted as the in-

verse of an input SNR at each frequency, i.e., [SNR(k)]−1.
This quantity determines how much weight should be given
to the prior at each frequency in the measurement band-
width. In practice, we use γ

MAP
(k) = c1σ̂

2
n/σ̂

2
R(k), since

often only estimates of the variances are available. The
constant c1 is introduced to add flexibility in optimizing
the estimates for a specific application and to assign a de-
gree of confidence to the model used to estimate γ

MAP
and

the prior. Currently we assume a single γMAP function for
the entire image. However, if information about variation
of object properties in the (x, y) image plane is available,
then γ

MAP
(x, y, k) may be used in place of γ

MAP
(k) in (7).

The advantages of using flexible priors are discussed in two
excellent papers by Hanson [23],[24].

The two terms in the numerator of (7) can be viewed
as a force pulling the solution in two directions [25]. As
SNR increases, γMAP is reduced to reflect the high relia-
bility of the measurements. Consequently the MAP esti-
mate is determined primarily by the first term, R̂MAP −→
X(k)/H(k), which is equivalent to the ML estimator de-
scribed previously [11]. As SNR decreases, however, γMAP
is increased to reflect the poor reliability of the data and
to give the prior more weight, such that the second term
dominates the estimate, R̂MAP −→ R. In the next sec-
tion, we obtain a constrained least squares solution and
review the strong similarities between the two estimates
for Gaussian density functions despite the different under-
lying assumptions.

IV. Constrained Least Squares (CLS) Estimator

An alternative approach to scatterer size estimation is
to assume that the object being imaged is determinis-
tic and obtain a least-squares solution. Prior information

about R is incorporated into this method by constraining
possible solutions based on this knowledge. The problem
then reduces to minimizing a cost function by holding the
norm of the difference between the model and the measure-
ment constant, i.e., ‖ HR − X ‖2 = constant. Choosing
the norm of the error between a prior guess R and the true
estimate R as the cost function, ‖ R−R ‖2, and using the
linear model specified by (1), the minimization problem
can be restated as

R = arg min
R

(HR−X)∗(HR−X)

+γCLS (R−R)∗(R−R) , (8)

where γCLS is the Lagrangian multiplier that indicates the
relative degree of confidence between the measurements
and the prior. We differentiate the functional defined in
(8) with respect to R, set the result to zero, and simplify
to find the CLS estimate of R:

R̂CLS (k) =
H∗(k)X(k) + γCLS (k)R(k)
H∗(k)H(k) + γCLS (k)

. (9)

As with γMAP (k) in (7), γCLS (k) in (9) determines the
weight assigned to prior knowledge relative to the mea-
surement. While a small value of γCLS (k) results in a solu-
tion that approaches the least squares (and ML) solution,
a large γCLS (k) puts more weight on the prior. Therefore,
γCLS can be adjusted based on the reliability of measure-
ments and the amount of noise. Although several meth-
ods for selecting γ

CLS
have been proposed [19],[26],[27],

they usually require solving the inverse problem several
times to identify the appropriate value. Since we are most
interested in estimators that can be used for high-speed
imaging, these approaches are not feasible. Based on char-
acteristics of the object, we chose

γCLS (k) =
c2

|H(k)|2 , (10)

where c2 is a constant. Such a function gives more weight
to spectral measurements near the center frequency where
the measurement is most sensitive (SNR(k) is large) than
at the limits of the bandwidth where the measurement
is least sensitive (SNR(k) is small). This choice of γCLS
closely parallels the definition of γMAP , since an optimal
experimental setup requires that we select a pulse func-
tion for H(k) that is well matched to the most sensitive
frequencies of the object function R(k).

The CLS and MAP estimators are identical except for
the weighting function γ, although the physical models of
the object for the two approaches are very different. In the
MAP estimate, γMAP appears naturally as a quantity esti-
mated from knowledge of noise and object statistics. In the
CLS estimate, we have selected γCLS to be inversely pro-
portional to the sensitivity function. For γMAP and γCLS
used in this work, MAP and CLS techniques yield esti-
mates that are numerically equivalent. The similarity of
the two estimates is a consequence of R having a Gaussian
distribution. In general, the two approaches do not yield
the same estimator.
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It is also possible to generate an estimator that smooths
the result without prior information about the average ob-
ject function R(k). Setting R(k) = 0 in (7) and (9) gives

R̂Wiener(k) =
H∗(k)

H∗(k)H(k) + γ(k)
X(k)

= A(k)X(k) , (11)

where A(k) is the Wiener filter [17],[18].
For high noise levels, it is best to apply the CLS tech-

nique iteratively; gradually introducing the information
from the data at successive iterations results in a higher
contrast-to-noise ratio compared to a single iteration. At
the first iteration, we use R for the prior to obtain R̂, as in
(9). The first estimate is then used in place of R to form an
updated estimate, and the process is continued until there
is no further improvement in the quality of the estimate.
The general iteration scheme can be represented as:

R̂`+1
CLS

(k) =
H∗(k)X(k) + γ`

CLS
(k)R̂`

CLS
(k)

H∗(k)H(k) + γ`
CLS

(k)
for ` = 0, 1, 2, . . . (12)

where R̂`
CLS

= R for ` = 0. Only c2, (10), is varied with
each γ`CLS . It is intentionally set to a value larger than the
optimal value for the initial iteration, and is gradually de-
creased for successive iterations. The number of iterations
required depends on SNR, but ultimately, the success of
this technique is determined by the choice of c2 at each
iteration.

The iterative scheme presented here is similar to Pi-
card’s iterations that are known to work well only if the
initial estimates are close to the true values [16]. In our ap-
plication, reasonably accurate priors are available, so that
the iterative method of (12) could provide a distinct com-
putational advantage over other more complex techniques
[28]. Evidence in support of this hypothesis is provided in
Section VI.

V. Algorithm Performance

The performance of the above estimators are compared
for the task of discriminating among regions of differing
scatterer size. Normally, the best estimators are unbiased
and yield minimum variance [17]. Our task, however, is
one of detection, to maximize the visibility of targets in
scatterer size images. To minimize variance, we are willing
to introduce some bias as long as sufficient dynamic range
is preserved. Therefore, the performance criterion is chosen
to be the contrast-to-noise ratio defined as:

CNR =

(
∆D̂

)2

var(∆D̂)

=
(D̂i − D̂j)2

var(D̂i) + var(D̂j)
, (13)

Fig. 1. Simulated phantom used for the investigation. The object
consists of a background region with D̄ = 100 µm, an outer cortical
ring with D̄ = 200 µm, an inner medullary ring with D̄ = 50 µm,
and a central circular region with D̄ = 75 µm.

where i, j indicate two regions with mean scatterer size
estimates D̂i and D̂j and variances var(D̂i) and var(D̂j),
respectively. In our study, the C-scan pixels are uncorre-
lated, therefore cov(D̂i, D̂j) = 0. CNR indicates how well
two regions of the image can be distinguished visually but
does not account for the existence of a bias that affects
the two regions equally. The mean squared error MSE =
var(∆D̂) + bias2(∆D̂) does include the effects of bias but
does not address our detectability task. We use CNR to
assess algorithm performance, but if the bias is known,
the two measures may be related according to CNR =[
MSE + (2∆D̂∆D −∆D

2
)
]
/var(∆D̂)− 1.

VI. Results

Several simulations were performed to investigate the
effect of prior information on task performance. A 128 ×
128-pixel C-scan data set of echo signals from a kidney
was simulated for the investigation. This software phantom
had four regions that differed in average scatterer size:
a background region with D = 100 ± 15 µm, an outer
elliptical ring with D = 200±25 µm to simulate scatterers
in the renal cortex, an inner region with D = 50± 10 µm
to simulate scatterers in the renal medulla, and a central
circular region with D = 75± 15 µm. The ensemble mean
of the object function is depicted in Fig. 1.

A sampling rate of 25 MHz and a center frequency of
5 MHz were used for the simulations. The Gaussian pulse
duration was determined by σh = 0.1125 µs (3), which
gave a full-width-at-half-maximum amplitude bandwidth
of 3.33 MHz (67%) before adding noise. Performance of
the estimator was investigated as a function of the echo
waveform SNR ((11) in [12]) and range gate duration. The
former indicates the relative amount of noise power added
to the echo data and the latter indicates image slice thick-
ness. The measurement bandwidth was 60% for high SNR
(20 dB), and 40% for low SNR (5 dB).
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An ML reconstruction of the object depicted in Fig. 1
using a periodogram-based estimator (henceforth referred
to as ML) is shown in Fig. 2a for a 256-point waveform
and 20 dB SNR. This is the technique we currently use for
scatterer size imaging [6],[11]. For the same echo data, the
image in Fig. 2b was obtained with the MAP/CLS algo-
rithm, (7) or (9). Since γCLS = γMAP ≡ γ, the CLS result
is equivalent to the MAP result for a single iteration, ` = 1.
Those images are labeled MAP/CLS. However, images ob-
tained from (12) for ` > 1 are labeled CLS. The image of
Fig. 2b was formed with a single iteration because, at high
SNR, more iterations produced no further improvements
in CNR. The prior information used to form Fig. 2b was
D = 100 µm. R(k) in (9) was obtained from (2), assum-
ing D = 100 µm for the entire image. Therefore, the prior
information was not entirely accurate throughout the im-
age, and no information about the shape of the object was
used.

The effect of reducing the SNR on algorithm perfor-
mance was also investigated. The image obtained for data
at 5 dB SNR with the ML algorithm is shown in Fig. 2c.
For the same prior information (D = 100 µm), the re-
construction with three iterations of the CLS technique is
depicted in Fig. 2d.

An image obtained using the Wiener filter estimator
of (11) is shown in Fig. 2e, and the result of the CLS
estimator when γ is independent of frequency is shown in
Fig. 2f. In both images, the SNR was 5 dB and the values
for γ were adjusted to give the highest CNR performance.

A similar set of simulations was performed with 32-
point echo waveforms. The information content per echo
waveform was proportionately lower for these cases. At
20 dB SNR, reconstructions with ML and two iterations
of the CLS technique are shown in Fig. 3a and b, re-
spectively. The corresponding images for 5 dB SNR are
shown in Fig. 3c and d. Although overall brightness was
adjusted to achieve the same average background bright-
ness for each image, the contrast was not altered.

Finally, values for CNR and average scatterer size es-
timated in the cortex and medulla regions are listed in
Table I. Comparing the values of D̂ with the object values
D (200 µm cortex, 50 µm medulla) indicates the amount of
bias each algorithm produces and how that bias influences
performance.

VII. Discussion

The effects of speckle and additive (electronic and dig-
itization) noise are apparent even for long waveform du-
ration, high SNR data segments. The performance (CNR)
achieved with the CLS algorithm is more than eight times
that for the ML estimate at 20 dB SNR although the
prior information only coarsely approximates the object.
For the same set of experimental conditions, but with
no additive noise, we calculated the theoretical perfor-
mance limit for the unbiased ML algorithm [12] to be CNR
× 100 = 492.56. The CLS algorithm exceeds this limit by
more than a factor of five by smoothing and biasing the
estimates (Table I). Thus, the high CNR value for the CLS

result of Fig. 2b is achieved at the cost of a reduced dy-
namic range.

At low SNR, the CLS algorithm provided its most sig-
nificant improvement in task performance through mul-
tiple iterations, where the information from the data is
gradually introduced into the solution. At 5 dB SNR, the
ML reconstruction is very noisy, as seen in Fig. 2c. The
improved quality of the image in Fig. 2d is due to a large
decrease in variance when the smooth prior is used. For the
task we defined, the large negative bias in the CLS esti-
mates is not a limitation since the objective is to suppress
the noise while preserving contrast.

The advantage of the iterative CLS approach may be
understood by examining Fig. 4, where CNR × 100 is
plotted as a function of c2. For one iteration (` = 1 in
(12)), c2 = 0.1 gives the best performance. The result at
c2 = 0 corresponds to the ML solution, and at c2 = ∞
corresponds to the solution as given by the prior where
∆D = 0. For multiple iterations, however, we find it best
to set c2 > 0.1 at the first iteration, which oversmooths the
solution, and to gradually decrease c2 at subsequent iter-
ations. Using R̂`=1

CLS(k) as the prior for the ` = 2 iteration
gives a CNR that is nearly doubled. A third iteration pro-
duces additional improvement in peak CNR, but for ` ≥ 4
performance is essentially unchanged. Iterations do not in-
crease CNR unless c2 is set to be greater than the value
at the peak. If it is much greater, then many iterations
are needed to reach the same peak performance. Slightly
oversmoothing the estimate by setting c2 > 0.1 in our ex-
ample uses only a portion of the information contained in
the data at the first iteration. Updating the prior with the
` = 1 estimate uses a smoothed version of the data for R
for the ` = 2 estimate. The new prior is more accurate but
less smooth than the first prior. Iteration balances the need
for a smooth result with the need for an accurate result.
The bias-variance tradeoff inherent in the CLS estimator
is complicated by the nonlinear nature of the estimate.

The MAP/CLS method uses the prior to minimize esti-
mation bias. If the prior is accurate, CLS estimation bias is
zero. The Wiener filter result of Fig. 2e uses R = 0; prior
knowledge is used only to determine the degree of smooth-
ness in the estimate. Therefore γmust be kept small to avoid
very high bias and loss of dynamic range. Low values of γ
smooth the estimates and reduce variance very little, so the
CNR is not improved appreciably over the ML result. Sim-
ilarly, setting γCLS to a constant, as in Fig. 2f, we ignored
prior information about how noise varies with frequency,
and consequently we found little improvement in perfor-
mance. While constant γ is frequently used for simplicity,
in this application the addition of the frequency informa-
tion was valuable. The advantages of using prior informa-
tion are obvious from Fig. 3 where the image slice thickness
is reduced from 256 points (7.9 mm) to 32 points (1.0 mm).

In all the images of Figs. 2 and 3, the central circu-
lar region with D = 75 µm is lost. The lack of contrast
in this region is more a consequence of reduced sensitiv-
ity at the center frequency for those scattering structures
rather than a noise limitation [11],[12]. At 5 MHz, the echo
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Images obtained for a C-scan data set consisting of 128 × 128 echo waveforms, each 256-points in duration (7.9 mm slice thickness).
(a) ML and (b) MAP/CLS algorithms obtained at 20 dB SNR; (c) and (d) are corresponding images at 5 dB SNR with ` = 3 in (d); (e) is
the image obtained with the Wiener filter for 5 dB SNR; and (f) is the MAP/CLS algorithm for 5 dB SNR when γCLS is constant.

TABLE I
CNR and D for medulla and cortex regions for various simulations (see Fig. 1).

N SNR Technique CNR×100 D̂medulla D̂cortex

256 20 dB ML-Periodogram 314.48 61.31 206.08
CLS/MAP 2721.07 15.75 102.86

5 dB ML-Periodogram 86.87 92.49 183.64
CLS 254.95 22.42 93.03
CLS (γ const.) 94.11 56.04 134.55
Wiener Filter 95.14 59.41 138.16

32 20 dB ML-Periodogram 51.16 83.80 181.19
CLS 245.67 31.16 144.40

5 dB ML-Periodogram 1.01 130.71 148.33
CLS 9.47 63.08 105.42

spectrum is most sensitive to variations in D near 100 µm
because the product of wave number and scatterer radius
kD/2 is approximately 1. In the central medullary region
where D = 50 µm, the target is made visible by increasing
the center frequency to 8 MHz, (Fig. 5). The ML algo-
rithm was used to process 256-point echo waveform data
at 20 dB SNR for the same test object. Although the cen-
tral target is now clearly visible, the contrast between the
bright cortical region and the background is significantly
degraded since ka ≈ 3.3 in that region.

An inherent limitation of techniques that use prior in-
formation in estimation is that they bias the estimate

based on the prior and the choice of γ. Therefore, in the
absence of accurate prior knowledge, the MAP/CLS tech-
nique does not improve performance and may further de-
grade the image. Accurate priors are needed the most when
the dynamic range of the estimator is limited. In that case,
autoregressive (AR) spectral estimation methods, used in
conjunction with the ML algorithm [29], offer significant
advantages.

The periodogram-based ML estimator can also be bi-
ased if the data segment is too short. To keep distor-
tion of the echo spectra less than 2%, the system band-
width Bg must exceed the spectral resolution Br by a
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(a) (b)

(c) (d)

Fig. 3. Images obtained for a 32-point segment (1.0 mm slice thickness). (a) ML and (b) CLS reconstructions obtained at 20 dB SNR;
(c) and (d) are corresponding images at 5 dB SNR.

Fig. 4. Contrast-to-noise ratio (CNR) obtained with iterative CLS
technique for a 256-point segment at 5 dB SNR. Solid line: 1 iteration;
–+–: 2 iterations; –o–: 3 iterations. The ML estimate corresponds to
c2 = 0.

Fig. 5. ML reconstruction of the test object for a 256-point echo
signal at 20 dB SNR when the transducer center frequency is 8 MHz
and nominal bandwidth is 60%.

factor of four [30], where Br along the beam axis is de-
termined by the duration of the windowed data segment.
Using (30) from [31] and the experimental parameters de-
fined in Section VI, we estimated the 3 dB spectral reso-
lution: Br ' 37.04/N cycles/mm, where N is the number
of data points in the waveform segment. The relation be-
tween the duration of our rectangular window T and that
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of the Gaussian-weighted window, αt in [31], is T =
√
παt,

which is found by comparing the equivalent bandwidths
[32]. The 3 dB system bandwidth for the Gaussian pulse is
Bg ' 3.06 cycles/mm. For the experimental parameters of
our simulation, the bias of the ML estimator is less than 2%
whenN ≥ 48 points. Analysis of our simulated echo signals
confirms that the spectra begin to flatten at a waveform
duration of approximately 2 µs. Consequently, the bias in
the ML results of Fig. 3a and 3c, and summarized in Ta-
ble I, are expected. To avoid windowing effects, AR-based
ML methods are recommended for thin slice reconstruc-
tions [29] when shapes of the pulse and tissue spectra are
known.

In real kidneys, small and large scatterers are spatially
mixed, a feature that was not simulated in this study.
However, the issue was partially addressed by assuming
a Gaussian distribution for the object in the development
of the MAP estimate in (7). How the distribution of scat-
terer sizes within a pulse-volume affects the validity of the
models used in this work is an important issue that needs
to be resolved. As part of future work, we intend to per-
form several experiments and a detailed analysis to test the
reliability of the results obtained from the simulations.

VIII. Conclusions

Integrating accurate prior information into the estima-
tion process can significantly increase the visibility of tar-
gets in scatterer size images. The Bayesian approach is
equivalent to a single iteration CLS estimator in our appli-
cation. The MAP formulation was important for choosing
useful regularization functions, γ. For high SNR and/or
large slice thicknesses, a single iteration is sufficient, and
for low SNR and/or small slice thicknesses, an iterative
CLS technique offers significant advantages. Scatterer size
estimates obtained with the CLS method are biased when
the priors are not exactly accurate. Nevertheless, the large
improvement in CNR greatly improves the detectability so
important for diagnosis.
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