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Precision errors that occur in estimating the average scatterer size from pulse-echo ultrasound
waveforms are examined in detail. The method-independent lower bound on estimation error is
found from the Crame´r–Rao inequality for comparison with the predicted error for the measurement
technique currently used to estimate scatterer sizes in soft biological tissues. The probability density
function for the estimate is also derived. From these statistical analyses, strategies for designing
experiments that minimize the error are discussed. It is shown that compared with biological
variability, measurement errors in scatterer size estimates are relatively large. Consequently, there
is reason to continue searching for more efficient estimators. Although the analysis and results are
derived for Gaussian correlation models that have been used to study the function and structure of
kidneys, generalization to include correlation models for other tissues is straightforward. ©1996
Acoustical Society of America.

PACS numbers: 43.60.Pt, 43.80.Cs, 43.80.Ev@JLK#

INTRODUCTION

Characterization of soft tissue microstructure is a princi-
pal goal of quantitative ultrasonic analysis. Specifically, the
average scatterer sizeD has been found to be particularly
sensitive to renal microvascular changes that occur early in
disease processes but cannot be measured by other means.1,2

For D to become an important new diagnostic indicator, it
must be possible to reliably detect variations in vascular lu-
men as small as 20%.1–3Although luminal changes can be as
large as 90%,2 the range of variations that can be detected in
any one scatterer size image is determined by the dynamic
range of the measurement. Accurate detection of small
changes is limited by precision errors introduced at various
steps of the estimation process. In order to assess the clinical
potential of scatterer size estimates and the performance of
any particular estimation technique, it is essential to under-
stand the nature of errors in the measurement process.

The purpose of the following analyses is threefold. First,
we derive the method-independent lower bound on the
mean-square error~MSE! eD

2 based on the Crame´r–Rao in-
equality. This bound establishes the lowest possible error for
estimating scatterer sizes and is independent of the estima-
tion method. Second, we derive expressions that predict the
variance of the estimate varD̂ as a function of the analysis
bandwidth for the maximum likelihood technique we cur-
rently use to study kidneys. Comparisons ofeD

2 and varD̂
yield the efficiency of the estimator for renal analysis. Third,
we derive the probability density function~pdf! of the scat-
terer size parameterD at a particular spatial frequencyk:
p(D;k). The results are verified through echo signal simula-
tions. Together these three analyses may be used to optimize
the experimental design and explain the empirical findings
reported earlier.

I. SCATTERING MODEL AND ESTIMATION
TECHNIQUE

A standard single-scatter model4,5 is often used to inter-
pret acoustic backscatter measurements from soft biological

media in terms of the underlying random structure.6–8 The
backscatter coefficient9–11 is the quantity that links math-
ematical models of acoustic scattering with ultrasonic mea-
surements, and is the basis for scatterer size estimates in the
eye,8 heart,12 and kidney.13 Due to their extensive use in the
analyses that follow, in this section we summarize the analy-
sis techniques that have been described previously.7,10,11

For plane-wave incidence and far-field observation of a
weakly scattering, continuous, isotropic, random medium,
the backscatter coefficientsb(k) is ~Section D of Ref. 15!

sb~k!5s0F~k,D !, ~1a!

where

s05k4VsE$g2%/16p2, ~1b!

F~k,D !5
2p

kVs
E
0

`

bg~Dr !sin~2kDr !dDr . ~1c!

The relationship between spatial frequencyk, temporal fre-
quency f , wavelengthl, and sound speedc is k52p/l
52p f /c. The backscatter coefficient in Eq.~1a! has been
factored into the product of the Rayleigh scattering coeffi-
cient s0 and the form factorF(k,D). By studying the form
factor, we can isolate important structural features of tissue
morphology and function, such as scatterer size and shape,
independent of other features, such as scatterer number den-
sity, impedance, attenuation, and measurement system re-
sponse.

The ‘‘scattering structure’’ of a tissue isg(r ), a function
that defines the fluctuations in the microscopic elastic prop-
erties of a medium. The structure of a continuous, stationary,
random scattering medium is summarized by the autocorre-
lation function E$g(r 1)g(r 2)%5E$g2(r )%bg(Dr ), where
E$•••% indicates the expected value of the argument and
bg(Dr ) is the correlation coefficient~also referred to as the
normalized autocorrelation function in some signal process-
ing literature! ~Appendix B of Ref. 15!. The correlation co-
efficient for this stationary random process is a function of
relative position in the mediumDr5r 12r 2 . Using this
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model, it can be shown15 that for far-field observation, the
form factor of Eq.~1c! is the Fourier transform of the corre-
lation coefficient normalized by the effective volume of the
scattering site,Vs[*2`

` bg(Dr )dvD .
The effective scatterer sizeD in random continua is de-

fined relative to the characteristic dimension of the correla-
tion function d by equating the spherical volume
4p(D/2)3/3 with Vs as calculated for a specific correlation
model function. For example, the spherically symmetric
Gaussian correlation model of correlation lengthd,

bg~Dr !5exp~2Dr 2/2d2!, ~2a!

yields15

D/d5~12A2p!1/3.3.11[d1 . ~2b!

Consequently, Eq.~1a! provides the requisite relationship be-
tween backscatter measurements and tissue microstructure
needed to estimate an average scatterer size.

Our estimation strategy is to first identify a correlation
model functionbg that is representative of the test sample
under investigation. We have shown previously1,13 that a
multicomponent version of the Gaussian model in Eq.~2a! is
well suited to the investigation of microvascular anatomy
and function in the renal cortex. For the chosenbg , a set of
form factor model functionsF(k,D) is computed for the
measurement bandwidth of~spatial! frequenciesk1<k<k2
and scatterer sizesD1<D<D2 possible in the sample. A
small amount of prior information, obtained through histo-
logical analysis, is used to find these limits. Subsequently,
backscatter coefficients are measured7,10 for the test sample
and the corresponding form factors are estimated.14 Finally,
we determine the estimateD̂ from the model functionF that
produces the smallest mean square difference when com-
pared to the measurementF̂.

How efficient is this strategy? That is, how well does
this estimator use the available information to perform its
task? The results of the next two sections provide a partial
answer.

II. THE CRAMÉR–RAO LOWER BOUND (CRLB)

In this section, the lower bound on the MSE for scatterer
size estimation,eD

2 , is derived from the Crame´r–Rao in-
equality. For this purpose, it is convenient to consider a dis-
crete sampling16 of the continuous echo waveform. Assume
D̂ to be an unbiased estimate of scatterer size, i.e.,E$D̂%2D
50, as determined from an analysis of the measurement vec-
tor xt5(x[0],x[1],...,x[N21]). xt is the transpose of the
N-point column vectorx. We further assume that the likeli-
hood functionp~x;D!, which represents a family of pdf’s
comprised of one density function for each deterministicD
value, is known. From the likelihood function, we find the
variance of the estimate:

var D̂5E$~D̂2D !2%

5E
2`

`

~D̂2D !2p~x;D !dx for all D.

Consequently, varD̂ is a function ofD. It is well known17

that if ]p/]D exists, then varD̂ can be no smaller thaneD
2 ,

i.e.,

var D̂>eD
2 5F2EH ]2 ln p~x;D !

]D2 J G21

, ~3!

where the result after taking derivatives is evaluated at a
specific value forD. Equation~3! is the Crame´r–Rao in-
equality, andeD

2 is the CRLB on the estimation error. We
now describe a linear model of echo-signal formation that
enables us to solve Eq.~3! by constructing a likelihood func-
tion that is both consistent with experimental observations18

and mathematically tractable.19

The measurement vectorx is modeled as the sum of the
echo signals and measurement noisen. For thei th temporal
sample,

x@ i #5s@ i #1n@ i # 0< i<N21, ~4!

where all terms are random variables. Noise samples are
drawn from a zero-mean Gaussian white process, as indi-
cated by the notationN (0,sn

2), and are assumed to be un-
correlated with each other and with the signal samples. The
echo signal iss@ i # 5 g@ i #* g^m&@ i #, the convolution of a spa-
tially invariant20 pulse-echo impulse response of the mea-
surement systemg with the reflectivity profile of the medium
g. The pulse-echo impulse response is the convolution of the
transmitted and received impulse responses:g@ i #
5 gtran@ i #* grec@ i #. Furthermore, the reflectivity profile is an-
other linear process, g^m&@ i #5t@ i #* r ^m& , where
r ^m&5N (0,s r

2) andt[ i ] is the tissue impulse response, such
that bg[ i2 j ]5E$t[ i ] t[ j ] %/E$t2[ i ] %. To summarize the de-
tails of Eq.~4!,

~5!

,

whereh[ i ] is a spatially invariant filter that combines prop-
erties of the pulse and tissue19 such that when it is convolved
with the spatially variant random processr ^m& and added to
measurement noisen[ i ], we generate a measurement sample
with the essential properties of an ultrasonic echo signal
x[ i ].

Based on this model, the likelihood function is multi-
variate GaussianN „0,K (D)…. More specifically,

p~x;D !5)
i
p~xi ;D !

5@~2p!N detK #21/2 exp~2 1
2x

tK21x!, ~6!

whereK5E$xxt%5E$sst%1sn
2I is the covariance matrix of

the datax, I is the identity matrix, detK is the determinant of
K andK21 is its inverse. Notice thatx andK are functions of
D.

Let the total correlation time beL points for the incident
ultrasonic pulse andM points for the tissue impulse re-
sponse. The total correlation time is defined as the maximum
lag j2 i of the autocorrelation functionE$h[ i ]h[ i1( j2 i )] %
for which the autocorrelation function is essentially
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nonzero.17 For typical situations, the echo signal has a large
time-bandwidth product (L1M!N) and elements of the co-
variance matrix are given by

Ki , j55
E$s2@ i #%1sn

25s r
2( i~h@ i # !21sn

2, i5 j ,

E$s@ i #s@ j #%5s r
2( ih@ i #h@ i2~ i2 j !#,

0,u i2 j u,L1M ,

0, L1M>u i2 j u>N .

~7!

Using the notation H(k)5F $h[ l ] %5( l50
` h[ l ]

3exp(2 i lkcDt) andh[ l ]5F 21$H(k)% to indicate discrete-
time Fourier transform pairs, we express the covariance ma-
trix elements of Eq.~7! as

E$s@ i #s@ j #%5s r
2
F 21$uH~k!u2% 0<u i2 j u,L1M

5s r
2
F 21$uT~k!u2uG~k!u2%, ~8a!

whereuH(k)u2 is the squared modulus of the complex trans-
form H(k),

uT~k!u25k4F~k,D !5k4 exp~22k2D2/d1
2! ~8b!

and

uG~k!u25 1
4@exp„2~k1k0!

2sg
2
…22 exp„2~k21k0

2!sg
2
…

1exp„2~k2k0!
2sg

2
…#. ~8c!

The right-hand side of Eq.~8b! was found by combining
Eqs.~1c!–~2b!, and Eq.~8c! is the power spectral density of
a pulse functiong[ i ] modeled as a sine wave of frequency
k0 with a Gaussian-modulated envelope of characteristic di-
mensionsg . Note that uT(k)u2 is a function of the form
factor.

The covariance matrix of Eq.~8a! is Toeplitz as illus-
trated in Fig. 1. In Fig. 1~a!, the scatterer sizeD has been
selected to be equal to the full-width-at-half-maximum
~FWHM! ultrasonic pulse length of 1 mm.21 In Fig. 1~b!,
however,D has been reduced to 25mm while the pulse
length is unchanged. As the scatterer size increases from a
point (L@M ) to the size of the pulse (L.M ), the correla-
tion length of theh[ i ] filter increases.

We now have all the parts necessary to construct a like-
lihood function. From Eq.~6!,

ln p~x;D !52 1
2~ ln@~2p!N detK #1xtK21x!. ~9!

The partial differentiation of Eq.~3! was computed using the
difference approximation:19

S ]2 ln p

]D2 D
D

.
ln puD2DD22 ln puD1 ln puD1DD

DD2 , ~10!

whereDD is an incremental change about a specific value of
D.

Two sets of echo data were simulated to investigate the
behavior of the CRLB developed in this section. With the
first set, we explored the relationship betweeneD and the
input signal-to-noise ratio~SNR!. With the second set, we
explored the relationship betweeneD andD, and examined
an asymptotic CRLB expression. SNR was defined as the
ratio of signal power to noise power at center frequencyk0 ,

SNR~dB)510 logS uS~k0!u2

uN~k0!u2
D . ~11!

A more commonly used definition of the SNR for the data
model given by Eq.~7! is

SNR~dB)510 logS s r
2( i~h@ i # !2

sn
2 D . ~12!

When the spectral shape is the same for both signal and
noise, the two definitions are equivalent. When the signal
spectrum is Gaussian and the noise is white, as in the experi-
ments presented in this paper, Eq.~11! is more conservative
and results in an SNR level that is higher by approximately
3.9 dB compared to the definition given in Eq.~12!.

Echo signals were simulated with a center frequency of
5 MHz @k052p35 MHz/~1.54 mm/ms!520.4 mm21#, a
sampling rate of 2.53107 samples per second, andN5256
points per waveform. The partial derivatives of the log-
likelihood function were evaluated using Eq.~10! with DD
52.0mm, and the expectation was approximated by averag-
ing the results from 100 realizations ofx. The covariance
matrix was computed using Eqs.~7! and ~8!, where we set
s r
251, sg

250.03 mm2, and sn
2 was found from Eq.~12!.

Finally, eD was estimated using Eq.~3!.
In the first study,D was fixed at 100mm. As shown in

Fig. 2, eD decreases rapidly as the SNR increases from 0 to
40 dB.

In the second study, we sought to validate oureD results
by comparisons with those of an asymptotic CRLB expres-
sion ~Section 3.10 of Ref. 17!. For zero-mean echo signals
having bandlimited power spectral density~PSD! Pxx(k),
the asymptotic CRLB forD, ẽD

2 , is given by

ẽ D
2 5FN2 E

21/2

1/2 S ] ln Pxx~k;D !
]D D 2dkG21

→
N@L1M

eD
2 .

~13!

The advantage of using Eq.~13! is its ease of calculation.
When the time-bandwidth product is large,ẽD is approxi-
mately equal toeD . @In our simulations,N/(L1M ).10. For
example, see Fig. 1.# To compute Eq.~13!, Pxx may be ob-
tained from the scattering model of Eq.~8!:

Pxx~k!5c1k
4F~k!uG~k!u2, ~14!

FIG. 1. Images of the covariance matrix forN5256 and SNR540 dB. ~a!
D/FWHM;1 and~b! D/FWHM;0.02.
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wherec1 is a frequency-independent constant. Values ofẽD
that result from Eqs.~13! and~14! are shown in Fig. 3 along
with the eD results. Both curves are plotted as a function of
D from 65 through 110mm and for SNR540 dB. The two
curves, which are very similar, show that errors decrease for
larger scatterer sizes in this range, and that the lower bound
on the MSE is small compared to the mean value.

III. VARIANCE OF THE SCATTERER DIAMETER
ESTIMATES

Realistic estimates of varD̂ must account for all sources
of measurement error, including those introduced by the
method of data reduction. The quantityeD

2 , derived in the
previous section, is independent of the estimation technique;
it depends only on the total information contained inx.
While the CRLB may not be achievable in practice, it estab-
lished the ‘‘best possible’’ performance for scatterer size es-

timation. In this section, we develop an analytical expression
for var D̂ that may be achieved experimentally using the es-
timation procedures described in Sec. I.

As previously described, scatterer sizes are measured
from the form factor, which is determined fromP̂xx , the
estimated PSD, of the data. The popular periodogram PSD
estimator22 for the data of Eq.~5! is

P̂xx~k!5
Dt

N U (
l51

N21

x@ l #exp~2 i lkcDt !U25 1

NDt
uX~k!u2,

~15!

whereDt is the sampling interval andX(k)5F $x%. For a
periodogram, the variance of each estimate in the analysis
bandwidth is given by~Appendix 4.A of Ref. 22!:

var P̂xx~k!'@Pxx~k!#2q~k!, ~16!

wherePxx(k) is the expected or ‘‘true’’ PSD, and

q~k!5F11S sin~kcNDt !

N sin~kcDt ! D
2G . ~17!

From the definition in Eq.~15!, a periodogram is seen to be
an inconsistent estimator since the variance of an estimate
does not approach zero as the length of the signalN is in-

creased to infinity. Rather, varP̂xx(k) →
N→`

@Pxx(k)#
2.

Our goal is to obtain varD̂ from knowledge of varP̂xx

as given by Eq.~16!. Fixing the scatterer size, we write
F(k)[F(k,D)uD , and combining Eqs.~14! and ~16! gives

var F̂~k!5@c1k
4uG~k!u2#22 var P̂xx~k!'@F~k!#2q~k!.

~18!

The estimateD̂ is obtained by determining the minimum
mean-square difference between the form factor for the true
scatterer size, given by Eq.~8b!, and the measurementF̂.
Therefore, the problem of measuringD̂ is essentially one of
minimizing x2 as defined by

x25(
i51

K
1

var F̂~ki !
$F̂~ki !2exp~22ki

2D2/d1
2!%2, ~19!

whereK is the number of points included in the analysis
bandwidth over whichF̂ and F are compared. A compact
mathematical expression of our scatterer size estimator is

D̂5arg min
D

x2. ~20!

To solve Eq.~20!, we take the derivative of Eq.~19!
with respect toD and set it equal to zero:

(
i51

K ki
2

var F̂~ki !
expH 2

2ki
2D2

d1
2 J

3F F̂~ki !2expH 2
2ki

2D2

d1
2 J G50. ~21!

The estimateD̂ is the value ofD that satisfies Eq.~21!. The
variance of this estimate can be obtained by error propaga-
tion through the use of a Taylor series expansion.23 Assum-
ing that errors inF̂ are not too large, so that we may ignore
second- and higher-order partial derivatives, and thatN is

FIG. 2. Variation of the CRLB with the input SNR.

FIG. 3. Exact@Eq. ~3!# and asymptotic@Eq. ~13!# expressions for the CRLB
on D̂ error are plotted with the predicted standard deviation of the estimate
@Eq. ~26!# as a function of scatterer size.
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large, so that theF̂(ki) are uncorrelated, varD̂ may be ex-
pressed as

var D̂'(
j51

K H var F̂~kj !S ]D

]F̂~kj !
D 2J . ~22!

The small-error assumption is satisfied whenk0a[k0D/
2;1. If the average scatterer size for a medium isD, select-
ing a center frequencyk0 that satisfies this condition ensures
that the form factor is sensitive to small changes in scatterer
size,14 and spectral noise is less detrimental to the estimate.
This concept is discussed further in later sections.

To evaluate Eq.~22!, an expression for the derivative of
D with respect toF̂ is required. The desired expression is
obtained by differentiating Eq.~21! with respect toF̂(kj ).
Let Yi represent the summation arguments, so that Eq.~21!
reads( i51

K Yi50. Using the chain rule,

]Yi

]F̂~kj !
5

]Yi

]D

]D

]F̂~kj !
, ~23!

it is straightforward to show from Eq.~21! that

]D

]F̂~kj !
5H kj

2d1
2

4D var F̂~kj !
expS 2

2kj
2D2

d1
2 D 1v j8J

3H (
i51

K F ki
4

var F̂~ki !
expS 2

2ki
2D2

d1
2 D

3H F̂~ki !22 expS 2
2ki

2D2

d1
2 D J G J 21

, ~24!

wherev j8 represents the contribution from the derivative of
var F̂(ki). From Eq.~18!,

v j8'2(
i51

K

ki
2 expS 2

2ki
2D2

d1
2 D F 2F~ki !

„var F̂~ki !…
2

3H F̂~ki !2expS 2
2ki

2D2

d1
2 D J G ]F~ki !

]F̂~kj !
, ~25!

whenN is large such thatq(k)'1. Substituting Eqs.~24!
and~25! into Eq.~22! and simplifying, we find the following
expression for the variance ofD̂:

var D̂'
d1
4

16D2 H (
i51

K F ki
4

var F̂~ki !
expS 2

2ki
2D2

d1
2 D H F̂~ki !

22 expS 2
2ki

2D2

d1
2 D J G J 22

(
j51

K H var F̂~kj !

3Fv j81
kj
2

var F̂~kj !
expS 2

2kj
2D2

d1
2 D G2J . ~26!

Although Eq.~26! provides a closed-form expression for the
variance, it cannot be evaluated analytically. Not only do we
need expressions for the measurements and their variances,
but we also need the derivatives of the measurements with
respect to the modelF to computev j8 . Also, the complexity
of the expression obscures much of the physical insight into
Eq. ~26!. ExpandingF̂ in a Taylor series

F̂5F1~ F̂2F !
]F

]F̂
1•••

and preserving only the zeroth-order term such that
F̂(ki)'exp(22ki

2D2/d1
2), we simplify the expression sig-

nificantly. Combining Eqs.~18! and ~26! gives

var D̂'
d1
4

16D2 H (
i51

K F ki
4

q~ki !
G J 21

. ~27!

Equation~27! shows that varD̂ is lower for large scatterers
interrogated at high frequencies, providedk0a'1. The re-
sults of Eq.~27! are compared with those of the CRLB in
Fig. 3.

Truncation of the Taylor series is expected to reduce the
accuracy of Eq.~27!. To appreciate how much, we examined
two sets of simulated echo signals, at 3 and 5 MHz center
frequencies, that were generated as described in Sec. II. Each

FIG. 4. Plot of the estimation error as a function of the measurement band-
width. ~a! Center frequency53 MHz, D5150 mm and ~b! center
frequency55 MHz, D5100mm.
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set consisted of four hundred independent waveforms. The
simulated waveforms did not include additive noise in order
to observe how varD̂ varies with analysis bandwidth.

Using Fig. 4~a! and~b!, we compared the results of Eq.
~27! with those obtained from the simulated data. In Fig.
4~a!, D5150mm andf 053 MHz, and in Fig. 4~b!, D5100
mm and f 055 MHz. Consequently,k0a'1 such that the
form factor is most sensitive to changes inD. Only one echo
waveform, 10.2ms in duration~N5256 pts!, was used to
determine eachD̂ estimate. Bias errors for the simulated data
were negligible. We observed that the errors predicted by Eq.
~27! are very similar to the measured errors involving echo
simulations when the analysis bandwidth exceeds 80% of the
center frequency. For smaller bandwidths, higher-order
terms in the Taylor series applied to Eq.~26! cannot be ig-
nored and there is less agreement between the simulations
and the prediction from the theory.

IV. A PROBABILITY DENSITY FUNCTION

The error analyses of the previous sections provide in-
formation about the best-possible precision and the expected
precision in an ideal experiment. The probability density
function for D̂ offers additional clues that could help us
adapt the experimental design in a manner that minimizes
error under more general measurement conditions.

The pdf of the echo signal from random scattering media
is well known.18,24As with the in-phase and quadrature com-
ponents of the echo signalx[ i ], the joint pdf of the real and
imaginary parts of the complex Fourier amplitude
X(k)5Xr1 iXi are completely specified by

p~Xr ,Xi !5
1

2psx
2 expH 2

Xr
21Xi

2

2sx
2 J . ~28!

Furthermore, the pdf of the echo intensityuX(k)u2 is

p~ uX~k!u2!5
1

2sx
2 expH 2

uX~k!u2

2sx
2 J . ~29!

Combining Eqs.~14!, ~15!, ~29!, and using the general trans-
formation property of density functions,

p~u!5p~v !UdudvU
21

, ~30!

the pdf of the form factor at frequencyk may be expressed as

p~F;k!5
G1~k!

2sx
2 expH 2

G1~k!F~k!

2sx
2 J , F>0, ~31!

where G1(k)[c1NDtk4uG(k)u2. The mean form factor
value at frequencyk is E$F%52sx

2/G1(k) and the variance
is E$(F2E$F%)2%54sx

4/G1
2(k), so that the ratio

(E$F%)2/E$(F2E$F%)2%51, which is the same as that for
the echo intensity.18

Applying the transformation property of Eq.~30! a sec-
ond time yieldsp(D;k). To compute the derivative, we first
invert Eq.~8b!

D~F !5A d1
2

2k2 H lnS 1F D J 1/2, ~32!

and then find

dD~F !

dF
52A d1

2

2k2
1

2F H lnS 1F D J 21/2

52
d1
2

4k2
1

D
expH 2k2D2

d1
2 J . ~33!

The final form of Eq. ~33! is found using the relation
F5exp$22k2D2/d1

2%. From Eqs.~30!–~33!, the pdf of the
scatterer sizeD at frequencyk is given by

p~D;k!5
2k2D

d1
2s1

2~k!
expF2H 2k2D2

d1
2 1

1

2s1
2~k!

3expS 2
2k2D2

d1
2 D J G D>0, ~34!

wheres1
2(k)5sx

2/G1(k). From plots of Eq.~34! in Fig. 5 as
a function ofka5kD/2, we can obtain much insight into the
estimation process once we interpret the meaning ofs1(k).

Wagneret al.18 interpreted the quantitysx
2 from the den-

sity functions in Eqs.~28! and~29! as the intensity backscat-
tered from a random medium. Using Eq.~8! and the inter-
pretation of sx

2 as the backscattered intensity, it can be
shown thats1

2(k) } F(k,D)/uG(k)u2, which is the ratio of the
tissue spectral density to pulse spectral density at frequency
k. Whens1 is large, the tissue spectrum is broadbanded com-
pared to the pulse spectrum, and Eq.~34! reduces to a Ray-
leigh pdf:

p~D;k!'
2k2D

d1
2s1

2~k!
expS 2

2k2D2

d1
2 D D>0. ~35!

Curves fors1.5 were indistinguishable from the curve for
s155 shown in Fig. 5. However, whens1'1, the pulse spec-
trum and tissue spectrum are comparable. Further reductions
in s1 occur when the pulse length is smaller than the scat-
terer, which can only happen whenka.1. When that occurs,

FIG. 5. The normalized pdf ofD at frequencyk for three values ofs1(k).
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Eq. ~34! is no longer valid because the echo signal, on which
Eq. ~34! is based, is not well represented by the circular
Gaussian pdf of Eq.~28!. Rather, expressions forp(D;k)
must be derived from non-Gaussian probability models25,26

when the number of scatterers per resolution cell volume is
small. This limitation on the range of validity of this analysis
also explains the apparent inconsistency in Eq.~31!. While
the Rayleigh distribution function given in Eq.~31! extends
to infinity, we know that the acoustic form factor is less than
one by definition. However,p(F;k) will be nonzero for
F.1 only whens1 is small; therefore, such an inconsistency
occurs only outside the domain of validity of the analysis.

Roughly speaking,s1 may be interpreted as the number
of scatterers per resolution cell volume. Whens1>5,
p(D;k) is nearly equal to the Rayleigh pdf of Eq.~35!.
When 1,s1,5, then Eq.~35! is a reasonable approximation.
However, whens1,1, the scattering medium is sparsely
populated by scatterers, and therefore a new pdf of the echo
signal must be specified.

In random media that produce echo signals described by
Eq. ~28!, p(D;k) is given by Eq.~35! and by the dotted
curve in Fig. 5. It is reasonable to design experiments in
which the interrogating frequencies are adjusted depending
on the average scatterer size to produce the most likely value
of D, which also corresponds to the peak of the dotted curve
in Fig. 5. The position of the maximum value ofp(D;k) is
easily calculated by differentiating Eq.~35! with respect toD
and setting the result to zero: 124k2D2/d1

250. This shows
that ka50.8 is most likely, and confirms our observations
based on phantom experiments.14

Note that the results of Secs. III and IV can be related
since varD̂5*(D̂2D)2p(D)dD, where p(D)
5*p(D;k)dk.

V. DISCUSSION

It is obvious from Fig. 3 that the scatterer size estimator
of Eq. ~20! is not efficientin the sense that~var D̂!1/2 is many
timeseD . This finding is not unexpected considering that the
efficiency of an estimator is reduced when the data and the
estimate are related through a nonlinear transformation,17 as
in Eq. ~32!. The ratio ~var D̂/eD

2 )1/2 is six for the 200%
analysis bandwidth used to generate the data in Fig. 3. How-
ever, that ratio increases as the bandwidth is reduced, e.g.,
the ratio is 12 for a 67% bandwidth.

The varD̂ can be reduced in two ways. First, if the input
SNR is large, then a wideband transducer can be used to
increase the number of points in the analysis bandwidth. As
shown in Fig. 4 and Eq.~27!, a larger bandwidth increases
the number of independent samples used in the estimation of
D̂, and varD̂;k24. If SNR is small, then varD̂ can be
reduced by averagingP estimates fromP adjacent but un-
correlated echo waveforms:D̄51/P( i51

P D̂i . The relative
variance, varD̄/var D̂51/P, is reduced at the expense of
spatial resolution. Note that because of the nonlinear trans-
formation, obtaining a single scatterer size estimate from an
average form factor is not equivalent to averagingD̂ ob-
tained from individual waveforms. While the benefit of av-
eraging estimates is task dependent, it is always helpful to
increase the analysis bandwidth as much as the noise will

allow. However, increasing the frequency and the bandwidth
works only if k0a'1 for the reasons detailed at the end of
Sec. IV, which emphasize the need for some prior informa-
tion about the medium under investigation.

Figure 4 shows that Eq.~27! accurately predicts varD̂ if
the analysis bandwidth exceeds 70%–80% of the transducer
center frequency. At smaller bandwidths the approximation
involving the Taylor series expansion ofF̂ breaks down and
Eq. ~27! underestimates the error. In our experience studying
renal tissue,1 the 220-dB bandwidth often exceeds 70% of
the center frequency, so that Eq.~27! is a good approxima-
tion of the variance.

If the PSD is estimated by a technique other than the
periodogram, the variance given by Eq.~27! is still valid if
the appropriate expression for the variance of the PSD is
used. The procedure for estimating the echo-signal power
spectral density~PSD! affects varD̂ through the variance of
the form factor. Therefore, additional independent sources of
measurement variance varmeas can be incorporated into the
model by substituting varF̂(ki)1varmeas in place of
var F̂(ki) in Eq. ~22!.

Finally, we place the results of this paper in the context
of in vivo scatterer size measurements made from the renal
cortex of normal adult human volunteers.27 Data for volun-
teers with similar weights and body compositions was con-
sidered to minimize interpatient biological variability. The
average scatterer size in 50 subjects using a single waveform
for each estimate was found to be 21067.74mm. A 3-MHz
transducer (k0a51.28) provided a 67% analysis bandwidth
~2–4 MHz!, and the waveforms were 10.2ms in duration
~N5256 pts!. The measured errors inD̂, those predicted
using the CRLB expression of Eq.~3! analogous to an infi-
nite bandwidth, and using Eq.~27! with a 67% bandwidth for
the same conditions are displayed in Fig. 6. For all errors
shown in the figure,a single 256-point waveformwas used to
obtain the estimate. Errors for thein vivo results include

FIG. 6. Comparison of measured and predicted scatterer size errors. All
errors are for normal human renal cortex at 3 MHz, and a single 256 point
waveform is used for estimation.
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measurement error as well as biological uncertainty. Thein
vivo data were reduced to a single waveform estimate by
multiplying the standard deviation by ten~two kidneys for
each of the 50 patients! to account for the 1/N dependence of
the variance. Comparing results of Fig. 6, we conclude that
the estimation uncertainty is at least as large as that caused
by biological variability.

VI. CONCLUSIONS

It is shown that Eq.~27! may be used to accurately pre-
dict varD̂ when the analysis bandwidth exceeds 80% of the
center frequency. The scatterer size estimator of Eq.~20!
does not reach the CRLB because of the nonlinear relation-
ship between the echo data andD. Furthermore, the discrep-
ancy between the achievable error and the lower bound is at
least as large as the biological variability, suggesting that a
more efficient estimator might be obtained.

The lowest achievable error in scatterer size is found
using the largest analysis bandwidth~determined by the SNR
of the echo signal! and a center frequency that satisfies the
relation k0a.0.8. These analytical results are consistent
with experimental findings reported earlier.14
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