Error bounds on ultrasonic scatterer size estimates
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Precision errors that occur in estimating the average scatterer size from pulse-echo ultrasound
waveforms are examined in detail. The method-independent lower bound on estimation error is
found from the Crarre-Rao inequality for comparison with the predicted error for the measurement
technique currently used to estimate scatterer sizes in soft biological tissues. The probability density
function for the estimate is also derived. From these statistical analyses, strategies for designing
experiments that minimize the error are discussed. It is shown that compared with biological
variability, measurement errors in scatterer size estimates are relatively large. Consequently, there
is reason to continue searching for more efficient estimators. Although the analysis and results are
derived for Gaussian correlation models that have been used to study the function and structure of
kidneys, generalization to include correlation models for other tissues is straightforwartio9®
Acoustical Society of America.

PACS numbers: 43.60.Pt, 43.80.Cs, 43.80.H\K]

INTRODUCTION media in terms of the underlying random structtif&The
Characterization of soft tissue microstructure is a princi—b"’mk.Scatter coefficiefn 'S the quant|ty t.hat links ”.‘ath'
ematical models of acoustic scattering with ultrasonic mea-

pal goal of quantitative ultrasonic analysis. Specifically, the ¢ dis the basis f it . timates in th
average scatterer siz2 has been found to be particularly surements, and IS the basis for scafterer size estimates in the

8 12 H 3 ; P H
sensitive to renal microvascular changes that occur early iffye: heart,” and kldn.ey1: 'Due tq their extenswg use in the
disease processes but cannot be measured by other Hean&palyses_that follow, in this section we summa_rézl}z)the analy-
For D to become an important new diagnostic indicator, it>1S tle;chmlques that h_av% been dedsirlbefz_dlgre\él ’ Iii_ f
must be possible to reliably detect variations in vascular lu- or plane-wave incidence and far-ield observation of a
men as small as 20963 Although luminal changes can be as weakly scattering, ccl)r}tmuous,l |sotroplc, random medium,
large as 909,the range of variations that can be detected inthe backscatter coefficienty(k) is (Section D of Ref. 15
any one scatterer size image is determined by the dynamic ¢, (k)=ooF(k,D), (1a
range of the measurement. Accurate detection of small

L - ; . “where
changes is limited by precision errors introduced at various

steps of the estimation process. In order to assess the clinical oo=k*VE{y?}/1672, (1b)
potential of scatterer size estimates and the performance of

any particular estimation technique, it is essential to under- F(k,D)= 2_77 fxb (Ar)sin(2KAr)dAr. (10)
stand the nature of errors in the measurement process. ' kVs Jo 77

The purpose of the following analyses is threefold. First
we derive the method-independent lower bound on th

2 s .
mean-square errdMSE) ep based on the CrameRao in-  _5 /0 " The packscatter coefficient in E¢la) has been

equality. This bound establishes the lowest possible error fQIractored into the product of the Rayleigh scattering coeffi-
estimating scatterer sizes and is independent of the estimgl-ema and the form factoF (k,D). By studying the form

. . . . 0 y .

tlon_ metho;j.thSeco?d, \;ve cé?rlve e?pre;s.smnsf ;[Eat preldlc.t thff’:lctor, we can isolate important structural features of tissue
varlance of the estimate var as a function ot the analysis morphology and function, such as scatterer size and shape,

bantflmdth tfor :hg rT(gdxlmum Cltlkehhogd te(?%;uqu; Webcur— independent of other features, such as scatterer number den-
rently use 1o study kidneys. LL.omparisonsegf and varb sity, impedance, attenuation, and measurement system re-
yield the efficiency of the estimator for renal analysis. Thlrd,Sponse

we derive the probability density functidipdf) of the scat- The “scattering structure” of a tissue ig(r), a function

terer size parametdP at a particular spatial frequendy that defines the fluctuations in the microscopic elastic prop-

P(D:k). The results are verified through echo signal S'mma_'erties of a medium. The structure of a continuous, stationary,

tions. Together these three analyses may be used to optimizg, o scattering medium is summarized by the autocorre-
the experimental design and explain the empirical flndlngﬁaﬂon function E{¥(r,) 'y(rz)}=E{'y2(r)}by(Ar), where

reported earlier. E{---} indicates the expected value of the argument and
| SCATTERING MODEL AND ESTIMATION b,(Ar) is the correlation coefficienalso referred to as the
fECHNIQUE _norrrjallzed autocorrelgtlon function in some S|gngl process-
ing literature (Appendix B of Ref. 15. The correlation co-
A standard single-scatter mo@elis often used to inter- efficient for this stationary random process is a function of
pret acoustic backscatter measurements from soft biologicaklative position in the mediumAr=r;—r,. Using this

"The relationship between spatial frequengytemporal fre-
%]uencyf, wavelength\, and sound speed is k=2x/\
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model, it can be showfi that for far-field observation, the Consequently, va is a function ofD. It is well known"’
form factor of Eq.(10) is the Fourier transform of the corre- that if Jp/dD exists, then vab can be no smaller thaeg,
lation coefficient normalized by the effective volume of thei.e.,
scattering siteV=[Z..b (Ar)dv,.

The effective scatterer sid@ in random continua is de- var 5;6%:
fined relative to the characteristic dimension of the correla-
tion function d by equating the spherical volume where the result after taking derivatives is evaluated at a
47(D/2)%/3 with V, as calculated for a specific correlation specific value forD. Equation(3) is the Crame-Rao in-
model function. For example, the spherically symmetricequality, ande? is the CRLB on the estimation error. We
Gaussian correlation model of correlation length now describe a linear model of echo-signal formation that
enables us to solve E¢B) by constructing a likelihood func-

-1

: ()

3% In p(x;D)

— 2 2
by(Ar)=exp(—Ar%/2d%), (23 tion that is both consistent with experimental observations
yieldst® and mathematically tractablé.
The measurement vectgris modeled as the sum of the
D/d=(122m)**~3.11=d,. (2b)  echo signak and measurement noise For theith temporal
sample,

Consequently, Eqla) provides the requisite relationship be-
tween backscatter measurements and tissue microstructure x[i]=g[i]+n[i] O<isN-1, 4
needed to estimate an average scatterer size.

Our estimation strategy is to first identify a correlation
model functionb,, that is representative of the test sample
under investigation. We have shown previotsfythat a
multicomponent version of the Gaussian model in @) is
well suited to the investigation of microvascular anatomy
and function in the renal cortex. For the chodgn a set of
form factor model functiond=(k,D) is computed for the
measurement bandwidth d$patia) frequenciesk,<k=<k,

B, <D< .
T o oo o e a1, Frtemor, e reflocty ot s
logical analysis, is used to find these limits. Subsequently?ther /."”e";“ process, ym[i]=tli]*r(y, where
backscatter coefficients are meastrédor the test sample r<m>=./l/. (0.’0“) and_t[|].|s the E'S.Slje impulse response, such
and the corresponding form factors are estimafefinally, thgt b, [i—j] =E{t[i]t[j]}/E{t"[i]}. To summarize the de-
we determine the estimaf2 from the model functiorF that tails of Eq.(4),

where all terms are random variables. Noise samples are
drawn from a zero-mean Gaussian white process, as indi-
cated by the notation/ (0,02), and are assumed to be un-
correlated with each other and with the signal samples. The
echo signalis[i] = g[i]* ymli], the convolution of a spa-
tially invariant® pulse-echo impulse response of the mea-
surement system with the reflectivity profile of the medium

v. The pulse-echo impulse response is the convolution of the
transmitted and received impulse responsegfi]

produces the smallest mean square difference when com- x[i1= gLiJ*t[i1*r iy + 1= RLi1#F g + [ 1]
pared to the measurement '
How efficient is this strategy? That is, how well does h[i]
this estimator use the available information to perform its
task? The results of the next two sections provide a partial O0=<isN-1, 5)
answer. whereh[i] is a spatially invariant filter that combines prop-

erties of the pulse and tisstfesuch that when it is convolved
with the spatially variant random procesg, and added to
measurement noisgi], we generate a measurement sample
with the essential properties of an ultrasonic echo signal
In this section, the lower bound on the MSE for scattere[i]- _ o o _
size estimation,e?, is derived from the CrameRao in- Based on this model, the likelihood function is multi-
equality. For this purpose, it is convenient to consider a disvariate Gaussian/(0,K(D)). More specifically,
crete samplintf of the continuous echo waveform, Assume

Il. THE CRAMER-RAO LOWER BOUND (CRLB)

D to be an unbiased estimate of scatterer size, B} —D p(x;D)=11 p(x;;D)
=0, as determined from an analysis of the measurement vec- !
tor x'=(x[0],x[1],...,.x[N—1]). X' is the transpose of the —[(2m)N detK] Y2 exp( — Ix'K ~1x), (6)

N-point column vectox. We further assume that the likeli-

hood functionp(x;D), which represents a family of pdf's . ) > ) ) .
the data, | is the identity matrix, deK is the determinant of

comprised of one density function for each determini&tic AR . )
value, is known. From the likelihood function, we find the g andKis its inverse. Notice thatandK are functions of

variance of the estimate:

where K =E{xx'} =E{ss} + 2| is the covariance matrix of

Let the total correlation time bie points for the incident

var f)=E{(f)—D)2} ultrasonic pulse andV points for the tissue impulse re-
sponse. The total correlation time is defined as the maximum
:fm (I5—D)2p(x;D)dx for all D. lagj—i of the autocorrelation functioB{h[i]h[i+(j —i)]}
—o for which the autocorrelation function is essentially
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N N In p(x;D)=—3(In[(2m)N detK]+x'K ~1x). 9)

L+M L+M

The partial differentiation of Eq.3) was computed using the
difference approximatiof®

#1Inp

dD?

_Inplo—ap=2Inplo+In plo+ap

~ , ,
5 AD

(10

whereAD is an incremental change about a specific value of
D.

Two sets of echo data were simulated to investigate the
behavior of the CRLB developed in this section. With the
first set, we explored the relationship betwegn and the

) () input signal-to-noise ratigSNR). With the second set, we
explored the relationship betweeg andD, and examined
FIG. 1. Images of the covariance matrix =256 and SNR=40 dB. (a) an asymptotic CRLB expression. SNR was defined as the

D/FWHM~1 and(b) D/FWHM~0.02. ratio of signal power to noise power at center frequekgy
|S(ko)|?

nonzero'’ For typical situations, the echo signal has a large ~ SNR(dB)=101lo W) (11)

time-bandwidth productl{+ M <N) and elements of the co-

variance matrix are given by A more commonly used definition of the SNR for the data

model given by Eq(7) is
E{s’[i]}+oh=07Z(h[i])2+op, i=], g y Eal?)

o o Z3i(h[i])?
o | EtslilsliT}=orSihlilhli= (=) - SNR(dB)= 10 IO%M). (12
H o<l|i—j|<L+M, "
0, L+M=[i—j|=N. When the spectral shape is the same for both signal and

noise, the two definitions are equivalent. When the signal
Using the notation H(k)=7%{h[I]}=2=,,h[l] spectrum is Gaussian and the noise is white, as in the experi-
xexp(—ilkcAt) andh[1]=7"YH(k)} to indicate discrete- ments presented in this paper, Efjl) is more conservative
time Fourier transform pairs, we express the covariance maand results in an SNR level that is higher by approximately
trix elements of Eq(7) as 3.9 dB compared to the definition given in E42).
N p| 2 . Echo signals were simulated with a center frequency of
E{slilslil}=or7 H{[HK®)[F  O0=<[i-j[<L+M 5 MHz [ko=27X5 MHz/(1.54 mmgs)=20.4 mmi], a
=27 H|T(k)|?|G(k)|?}, (8a sampling rate of 2.510 sample; per s.eco.nd, al= 256
5. points per waveform. The partial derivatives of the log-
where|H(k)|* is the squared modulus of the complex trans-jikelihood function were evaluated using EG.0) with AD
form H(k), =2.0 um, and the expectation was approximated by averag-
IT(K)[2=K*F(k,D)=kK* exp(—2k2D2/d§) (8b) ing t.he results from 100. realizations &f The covariance
matrix was computed using Eq&l) and (8), where we set
and o?=1, 05=0.03 mnf, and o3 was found from Eq(12).
G(K)12= Y exn(— (k+ k)262) — 2 extl — (K2 + k2) o2 Finally, e was estimated using E¢B).
|G(k)I= alexp(—( o) Ug) XH( 0 In the first studyD was fixed at 10Qum. As shown in
+exp(—(k—k0)2(r§)]. (8c)  Fig. 2, ep decreases rapidly as the SNR increases from O to

. . . 40 dB.
The right-hand side of Eq(8h) was found by combining In the second study, we sought to validate egresults

Egs.(10)~(2b), and Eq.(8c) is the power spectral density of 1, .omparisons with those of an asymptotic CRLB expres-
a pulse functiorg[i] modeled as a sine wave of frequency gjqn (section 3.10 of Ref. 17 For zero-mean echo signals
ko with a Gaussian-modulated envelope of characteristic dihaving bandlimited power spectral denstySD P,,(k),
frnetnsioncrg. Note that|T(k)|* is a function of the form asymptotic CRLB foD, 2, is given by
actor.

The covariance matrix of Eq8a) is Toeplitz as illus- N fl/z 9 In Py, (k;D) de
trated in Fig. 1. In Fig. (a), the scatterer siz® has been 2 12 D
selected to be equal to the full-width-at-half-maximum (13
(FWHM) ultrasonic pulse length of 1 mAt.In Fig. i(b),
however,D has been reduced to 2bm while the pulse
length is unchanged. As the scatterer size increases from

point (L>M) to the size of the pulseL(=M), the correla- example, see Fig. 1To compute Eq(13), P,, may be ob-

tion length of theh[i] filter increases. X . i
We now have all the parts necessary to construct a Iike'Ealmad from the scattering model of E@):

lihood function. From Eq(6), Px(K)=c k*F(K)|G(K)|?, (14)

—1 N>L+M

2= — €.

m1

The advantage of using E¢LJ) is its ease of calculation.
When the time-bandwidth product is large, is approxi-
r%ately equal tap . [In our simulationsN/(L+ M)>10. For
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9 : : i : : . : timation. In this section, we develop an analytical expression
for varD that may be achieved experimentally using the es-
timation procedures described in Sec. I.

As previously described, scatterer sizes are measured
from the form factor, which is determined frof,,, the
estimated PSD, of the data. The popular periodogram PSD
estimatof? for the data of Eq(5) is

§ F =— —i = 2
Puk) =7 | 24 x1]exst —ilkeAt)| =gz X0

(15

where At is the sampling interval an¥X(k)=.7{x}. For a
periodogram, the variance of each estimate in the analysis
bandwidth is given byAppendix 4.A of Ref. 22

‘o 5 10 15 20 25 %0 35 40 var IE’xx( K)~[ Pyl k)]ZQ(k), (16)

SNR (in dB)

whereP,,(K) is the expected or “true” PSD, and
sin(kcNAt) )2

q(k)=[1+ (—
wherec, is a frequency-independent constant. Valuegof N sin(keat)
that result from Eqs(13) and(14) are shown in Fig. 3 along From the definition in Eq(15), a periodogram is seen to be
with the ep results. Both curves are plotted as a function ofan inconsistent estimator since the variance of an estimate
D from 65 through 11Qum and for SNR=40 dB. The two does not approach zero as the length of the sighas in-
Icurves, which are very sirr?ilar, show thdatf:erro:]s dlecreage focg{eased to infinity. Rather, VAérxx(k)N:x[Pxx(k)]z' )

arger scatterer sizes in this range, and that the lower bound " - goal is to obtain vab from knowledge of vaP,,

on the MSE is small compared to the mean value. as given by Eq.16). Fixing the scatterer size, we write
F(k)=F(k,D)|p, and combining Eqs(14) and(16) gives

var F(k)=[ c;k*|G(K)[2] 72 var P(k)~[F(k)2q(Kk).
(18)

FIG. 2. Variation of the CRLB with the input SNR.

17

lll. VARIANCE OF THE SCATTERER DIAMETER
ESTIMATES

Realistic estimates of vd» must account for all sources The estimaté is obtained by determining the minimum

of measurement error, including those introduced by thenean_square difference between the form factor for the true
method of data reduction. The quantiég, derived in the scatterer size, given by E@8b), and the measuremeft

previous section, is independent of the estimation teChniqueﬁherefore, the problem of measuriByis essentially one of
it depends only on the total information contained Xn

minimizin as defined b
While the CRLB may not be achievable in practice, it estab- 9x y

lished the “best possible” performance for scatterer size es- ) K 1 - 2 212
X=2 —=——{F(k)—exp—2k’D?/d})}?, (19

i=1 varF(k))
16*\ ' ' ‘ ' ' ' ' ' where K is the number of points included in the analysis
al Tos ---o0--- DPredicted (varD)? | bandwidth over whichF and F are compared. A compact
\e\\ﬁ T if;‘f,f,,?ﬁfé;‘{& o mathematical expression of our scatterer size estimator is
7 e I D=arg min y2 (20)
S o
10F *0\\6\‘;
z To solve EQ.(20), we take the derivative of Eq19)
E sr ] with respect toD and set it equal to zero:
£ o . K 2k?D?
> exXp — —2
af i} i=1 varF(k)) di
, . 2k?D?
a:___+___+___+_~_+___+___*____+___+___j_ X| F(kj)—exp — T =0. (21

65 70 7 80 8 % 9% 100 105 10 The estimatd is the value oD that satisfies Eq21). The
seatterer diameter (1 ) variance of this estimate can be obtained by error propaga-
FIG. 3. Exac{Eq.(3)] and asymptoti¢Eq. (13)] expressions for the CRLB tion through the use of a Taylor series eXpang&)Assum_

onD error are plotted with the predicted standard deviation of the estimatéNd that errors i_rF are not too |<’_:1I’ge, S0 that We may ignore
[Eq. (26)] as a function of scatterer size. second- and higher-order partial derivatives, and thas
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150 . . - ' ' iy dY; D

—_— =, 23
X dF(kj) D oF(k;) @3
~ rediction from theor L. )
T~ Nt Soaiation it is straightforward to show from Ed21) that
100 dD kad% 2kJ-2D2 ,
= ex - 2 +Ul
dF(k;) 4D var F(k)) oy

(var D)/ (in pm)

% 2k?D?
= varF(k) ex d?

. 2k?D? -t
x[F(kQ—Zexp{——éz )]H . (29
1

‘ . , . . wherev| represents the contribution from the derivative of
1 15 2 25 3 35 4 varF(k;). From Eq.(19),

measurement bandwidth (in MHz)

50

K 212
, 2k?D?\[  2F(k)
® vj~=2 kizex;{— 2 p~
=1 ds (var F(k;))
100 X{IA:(k) % Zk?Dz)] oF (ki) (25
' ' : ' ' ' " ' )—exp — ,
9o} i | di ‘QF(ki)
I | when N is large such thag(k)~1. Substituting Eqs(24)
% e Prediction from theory and(25) into Eq.(22) and simplifying, we find the following
< T N srerrr Tememalambfon 4 expression for the variance f:
£ oo .od (& Kk 2k?D?
N ar D= exp — F K;
3 wf Y 1607 | & var F(k,) oz || P
T 2k?D?\ 1] 2 & .
30k —2ex ——'2— 2 var F(k;)
di =1
20F
2 2p2\ 12
1o} X U.'+—k1—ex —ZKJZD : (26)
I var F(kj) di
0 .

Although Eq.(26) provides a closed-form expression for the
variance, it cannot be evaluated analytically. Not only do we
FIG. 4. Plot of the estimation error as a function of the measurement bant{—;eed expressions for the _measurements and their Vananc_es’
width. (a) Center frequency3 MHz, D=150 wm and (b) center ut we also need the derivatives of the measurements with
frequency=5 MHz, D =100 um. respect to the modéil to computey ]’ . Also, the complexity

of the expression obscures much of the physical insight into
Eq. (26). ExpandingF in a Taylor series

measurement bandwidth (in MHz)

large, so that th@(ki) are uncorrelated, vaD may be ex-

pressed as - A dF
F=F+(F—-F) —<+---
JF
K 2
- J and preserving only the zeroth-order term such that
varD Z‘ {VarF(ki)(aF(kj)) } @2 F (ki) ~exp(— 2k’D?/d?), we simplify the expression sig-

nificantly. Combining Eqs(18) and (26) gives

The small-error assumption is satisfied whega=k,D/ R i S "
2~1. If the average scatterer size for a mediurDisselect- varD=~ 7= Z a(k) : (27)
ing a center frequendy, that satisfies this condition ensures -

that the form factor is sensitive to small changes in scattereEquation(27) shows that vab is lower for large scatterers

sizel* and spectral noise is less detrimental to the estimatenterrogated at high frequencies, providiegh~1. The re-

This concept is discussed further in later sections. sults of Eq.(27) are compared with those of the CRLB in
To evaluate Eq(22), an expression for the derivative of Fig. 3.

D with respect toF is required. The desired expression is Truncation of the Taylor series is expected to reduce the

obtained by differentiating Eq(21) with respect toF(k;). accuracy of Eq(27). To appreciate how much, we examined

Let Y; represent the summation arguments, so that(Et). two sets of simulated echo signals, at 3 and 5 MHz center

reads=F_,Y,=0. Using the chain rule, frequencies, that were generated as described in Sec. Il. Each
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set consisted of four hundred independent waveforms. The
simulated waveforms did not include additive noise in order

to observe how vab varies with analysis bandwidth.
Using Fig. 4a) and(b), we compared the results of Eq.

(27) with those obtained from the simulated data. In Fig.

4(a), D=150 um andfy,=3 MHz, and in Fig. 40), D=100
um and fo=5 MHz. Consequentlykpa~1 such that the £
form factor is most sensitive to changesdn Only one echo %
4

g

waveform, 10.2us in duration(N=256 ptg, was used to
determine each estimate. Bias errors for the simulated data
were negligible. We observed that the errors predicted by Eqg.
(27) are very similar to the measured errors involving echo
simulations when the analysis bandwidth exceeds 80% of the
center frequency. For smaller bandwidths, higher-order
terms in the Taylor series applied to E@6) cannot be ig-

nored and there is less agreement between the simulations

and the prediction from the theory.

IV. A PROBABILITY DENSITY FUNCTION

The error analyses of the previous sections provide in-
formation about the best-possible precision and the expected
precision in an ideal experiment. The probability density
function for D offers additional clues that could help us
adapt the experimental design in a manner that minimizes

error under more general measurement conditions.

The pdf of the echo signal from random scattering media

is well known!®24 As with the in-phase and quadrature com-
amplitude The final form of Eq.(33) is found using the relation

ponents of the echo signgli], the joint pdf of the real and
imaginary parts of the complex Fourier
X(k)=X, +iX; are completely specified by

X, X Xr2+xi2 28
pP(X, i)_FO_)Z(eX T 20 | (28)
Furthermore, the pdf of the echo intensji¥(k)|? is
X(K)|?
X(K)| 29

|

2
20

1
p(IX(K) )= 752 exp{ -

0.9

1

0.8

0.6
05
04

0.3f -

L
0.2 3
1

0.1

25
ka

L
i
I
0 0.5

FIG. 5. The normalized pdf dD at frequencyk for three values ot (k).

% 1 1/2
D(F)= W[|H<E)] ) (32)
and then find
dD(F)  [d? 1 nE 12
TdF  Vareer |MIF
~di 1 [2kD? a3
@ e | 33

F=exp{ — 2k?’D?/d?}. From Egs.(30—(33), the pdf of the
scatterer siz® at frequency is given by

2k2D? 1

(D;k) D p[ ( +
K== —exg - ——t+t =
P dG3(K) & 205K
2k?D?
xXex ——dz— D=0, (34)
1

whereo3(k) = 02/G,(k). From plots of Eq(34) in Fig. 5 as
a function ofka=kD/2, we can obtain much insight into the

Combining Eqgs(14), (1), (29), and using the general trans- ggimation process once we interpret the meaning¢k).
|®interpreted the quantity? from the den-

formation property of density functions,

dul ™1
E 1 (3

p(u)=p(v)

the pdf of the form factor at frequengéymay be expressed as

0

Wagneret a
sity functions in Eqs(28) and(29) as the intensity backscat-
tered from a random medium. Using E®) and the inter-
pretation of o2 as the backscattered intensity, it can be
shown thaw3(k) = F(k,D)/|G(k)|?, which is the ratio of the
tissue spectral density to pulse spectral density at frequency
k. Wheno is large, the tissue spectrum is broadbanded com-
pared to the pulse spectrum, and E84) reduces to a Ray-

Gi(k Gi(k)F(k
p(Fik)= l(2) eXP[—Lz()], F=0, (31
20% 20% leigh pdf:
where G;(k)=c;NAtk*|G(k)|>. The mean form factor 2k2D 2k2D?2
p(D;k)%Tex - D=0. (35)
dio3(k) di

value at frequenc is E{F}=202/G,(k) and the variance
ratio

is that the

the echo intensity®

Applying the transformation property of E(B0) a sec-
ond time yieldsp(D;k). To compute the derivative, we first in oy occur when the pulse length is smaller than the scat-
terer, which can only happen wh&a>1. When that occurs,

invert Eq. (8b)

397  J. Acoust. Soc. Am., Vol. 100, No. 1, July 1996

E{(F—E{F})?}=403%/G3(k), so
(E{FV)?/E{(F—E{F})?}=1, which is the same as that for Curves foro,;>5 were indistinguishable from the curve for
0,=5 shown in Fig. 5. However, whan~1, the pulse spec-

trum and tissue spectrum are comparable. Further reductions
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Eqg. (34) is no longer valid because the echo signal, on which g,
Eq. (34) is based, is not well represented by the circular
Gaussian pdf of Eq(28). Rather, expressions fqu(D;k) 70k .
must be derived from non-Gaussian probability moteéfs ‘
when the number of scatterers per resolution cell volume is sor ]
small. This limitation on the range of validity of this analysis
also explains the apparent inconsistency in &4). While sor 1
the Rayleigh distribution function given in E(B1) extends

to infinity, we know that the acoustic form factor is less than
one by definition. Howeverp(F;k) will be nonzero for
F>1 only wheno; is small; therefore, such an inconsistency

401 1

error (in pm)

occurs only outside the domain of validity of the analysis. o0l

Roughly speakingg; may be interpreted as the number
of scatterers per resolution cell volume. When=5, 10F .
p(D;k) is nearly equal to the Rayleigh pdf of E¢35).
When < 0,<5, then Eq(35) is a reasonable approximation. 0 : - -
However, wheno,<1, the scattering medium is sparsely C;‘;B '(“:’f:.)”’ m‘:’iﬁl;&om

populated by scatterers, and therefore a new pdf of the echo
signal must be specified.

In random media that produce echo signals described byiG. 6. Comparison of measured and predicted scatterer size errors. Al
Eq. (28), p(D;k) is given by Eq.(35 and by the dotted errors are for normal human renal cortex at 3 MHz, and a single 256 point
curve in Fig. 5. It is reasonable to design experiments ifvaveform is used for estimation.
which the interrogating frequencies are adjusted depending
on the average scatterer size to produce the most likely val
of D, which also corresponds to the peak of the dotted cur
in Fig. 5. The position of the maximum value p{D;k) is
easily calculated by differentiating E(B5) with respect tdD
and setting the result to zero-14k?D?/d3=0. This shows

thatka=0.8 is most “keIY’ and confirms our abservations the analysis bandwidth exceeds 70%—80% of the transducer
based on phantom experimerits. center frequency. At smaller bandwidths the approximation

Note that the results of Secs. il and IV can be relate qnvolvmg the Taylor series expansion Bfbreaks down and
since vaiD = f(D D)?p(D)dD, where p(D) Eq. (27) underestimates the error. In our experience studying
=/p(D:k)dk. renal tissué, the —20-dB bandwidth often exceeds 70% of
the center frequency, so that H&7) is a good approxima-

V. DISCUSSION tion of the variance.

It is obvious from Fig. 3 that the scatterer size estimator  If the PSD is estimated by a technique other than the
of Eq. (20) is not efficientin the sense tha(t/arD)l’2 ismany periodogram, the variance given by H7) is still valid if
timesep . This finding is not unexpected considering that thethe appropriate expression for the variance of the PSD is
efficiency of an estimator is reduced when the data and thesed. The procedure for estimating the echo-signal power
estimate are related through a nonlinear transformafias,  spectral densityPSD affects vaD through the variance of
in Eq. (32). The ratio (varD/csD)l’2 is six for the 200% the form factor. Therefore, additional independent sources of
analysis bandwidth used to generate the data in Fig. 3. Howneasurement variance yggscan be incorporated into the
ever, that ratio increases as the bandwidth is reduced, e.gnodel by substituting vaf(k;)+var,.,s in place of
the ratio is 12 for a 67% bandwidth. varF(k;) in Eqg. (22).

The varD can be reduced in two ways. First, if the input Finally, we place the results of this paper in the context
SNR is large, then a wideband transducer can be used tf in vivo scatterer size measurements made from the renal
increase the number of points in the analysis bandwidth. Asortex of normal adult human volunteéfsData for volun-
shown in Fig. 4 and Eq27), a larger bandwidth increases teers with similar weights and body compositions was con-
the number of independent samples used in the estimation sfdered to minimize interpatient biological variability. The
D, and vaD~k™*. If SNR is small, then vaD can be average scatterer size in 50 subjects using a single waveform
reduced by averagln@ estimates fronP adjacent but un- for each estimate was found to be 24D.74 um. A 3-MHz
correlated echo waveform®=1/P3_,D;. The relative transducer Koa=1.28) provided a 67% analysis bandwidth
variance, vaD/varD = 1/P, is reduced at the expense of (2—-4 MH2), and the waveforms were 10,2s in duration
spatial resolution. Note that because of the nonlinear trangN=256 pt3. The measured errors iD, those predicted
formation, obtaining a single scatterer size estimate from amsing the CRLB expression of E(8) analogous to an infi-
average form factor is not equivalent to averagidgob-  nite bandwidth, and using E(R7) with a 67% bandwidth for
tained from individual waveforms. While the benefit of av- the same conditions are displayed in Fig. 6. For all errors
eraging estimates is task dependent, it is always helpful tshown in the figurea single 256-point waveformvas used to
increase the analysis bandwidth as much as the noise witibtain the estimate. Errors for tha vivo results include

human kidney

USlow. However, increasing the frequency and the bandwidth
V&vorks only if kya~1 for the reasons detailed at the end of
Sec. IV, which emphasize the need for some prior informa-
tion about the medium under investigation.

Figure 4 shows that Eq27) accurately predicts v if
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