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Cross-correlation functions are derived with the purpose of determining how strain inhomogeneities
affect the displacement estimates used in ultrasound-based elastography. Variations in the strain
profile occur in most imaging situations and are caused by fluctuations in the stress field or elastic
modulus of the sample. An analytical framework for developing signal processing strategies in
elastography is described, and the limitations of correlation-based methods for measuring
displacements in tissuelike media caused by static compression are emphasized. This paper includes
~1! an accurate approximation for an inverse coordinate transformation that relates pre- and
postcompression reflectivity profiles of the media,~2! a derivation of the echo-signal
cross-correlation function in media with deterministic or stochastic strain profiles;~3! mathematical
and graphical descriptions of the consequences that nonuniformities in the strain profile impose
upon the uncertainty of displacement estimation; and~4! a demonstration of the advantages of echo
signal conditioning and ultrasonic-pulse shaping to reduce the nonstationary effects that attenuate
the cross-correlation peak and reduce the signal-to-noise ratio for displacement estimation.
© 1996 Acoustical Society of America.
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INTRODUCTION

Elastography is an application of the palpation principle
that offers the possibility of increased sensitivity and spatial
resolution for detecting changes in elastic properties deep in
the body.1 Physicians have long recognized the value of pal-
pation as a diagnostic technique for detecting disease. During
a physical examination, a physician’s hand is used to apply a
small force to the patient’s skin surface while the finger tips
sense for increases in tissue stiffness that could indicate the
presence of a mass near the surface. Palpation is the basis of
self-examination for detecting breast and testicular cancers.
However, no current diagnostic test measures elasticity
quantitatively.

Ultrasonic imaging of the breast is known to add new
information to standard diagnostic procedures, such as x-ray
mammography, and in some situations decreases the need for
surgical biopsy.2 For example, sonography can indicate
whether a palpable mass is cystic or solid. This information
is important for evaluating masses not visible in radiographi-
cally opaque breasts and other diagnostic situations. How-
ever, some solid lesions, such as invasive papillary carci-
noma, are not visible with sonography.2 It has been
demonstrated in phantoms thatB-mode images can fail to
show solid inclusions positioned in a fluid background.3

Therefore detection of low-contrast lesions may be improved
by adding quantitative information about tissue elasticity.

In elastography, local tissue deformations produced by
external compression are measured in order to describe the
spatial distribution of elasticity. It is well known that ultra-
sonic echo signals can be used to measure tissue displace-
ment and strain.5–15 A common procedure is to cross corre-
late echo signals received before and after static
compression. The maximum value of the cross-correlation
function is used to locate the average displacement in that
region. From displacement estimates, components of the

strain tensor are computed and strain images are formed.
With prior knowledge of the test medium, the calculated
strain tensor may be substituted into the constitutive equa-
tions of continuum mechanics to reconstruct elastic modulus
images.16,17The term ‘‘elastogram’’ can refer to either strain
images or elastic modulus images. Elastic modulus images
are preferred because they more accurately represent the in-
trinsic properties of the tissue and can maximize the inherent
target contrast by reducing artifacts caused by stress
nonuniformities.16

The elastic modulus that is calculated by straining the
tissue is substantially different from the elastic modulus de-
termined from the average wave speed in the medium. The
former is a macroscopic feature of the material structure and
the later is a microscopic feature of the structure. This dif-
ference has been observed in the solid mechanics of metals;
the Young’s modulus~;18003109 dyne cm22! and shear
modulus ~;8003109 dyne cm22! among steels are nearly
the same although the ultimate strengths vary a great deal
depending on the crystalline structure.18 While the elastic
moduli of metals are ‘‘structurally insensitive,’’ the strengths
are ‘‘structurally sensitive.’’

The ultimate goal of our effort is to maximize the low-
contrast detectability of elastography for soft biological tis-
sues. To achieve this goal, it is essential to understand how
to adjust experimental parameters and signal processing vari-
ables to ensure a large sharp peak in the cross-correlation
function, and thereby obtain accurate displacement esti-
mates. This paper summarizes our analysis of echo-signal
cross correlation that is the basis of elastographic image for-
mation. We study how properties of the instruments and the
tissue determine features of the cross-correlation function,
and explain the advantages gained by processing signals be-
fore correlation. In particular, stretching the postcompression
echo signal and/or shaping the ultrasonic pulse can signifi-
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cantly increase the magnitude of the cross-correlation func-
tion. Section I summarizes our assumptions regarding elastic
properties of soft biological tissues and echo-signal forma-
tion that are essential to the description of tissue motion
within the scan plane of the transducer. In Sec. II, we derive
cross-correlation functions for tissuelike media that exhibit
deterministic and stochastic strain profiles. In Sec. III, we
discuss the results of the analysis by showing how modifica-
tions to the experiment and processing of the echo signals
can reduce displacement errors. Finally, we conclude with a
summary in Sec. IV.

I. BACKGROUND

A. Assumptions

Consider a uniaxial loading of an incompressible tissue
sample along thez axis as defined by the axis of the ultra-
sound beam. Uniaxial loading will occur when the dimen-
sions of coaxial, planar compressor plates are larger than the
sample dimensions19 as in Fig. 1, or when one compressor
plate is smaller than the sample but appropriately shaped to
produce a stress field that is constant in thex,y plane, vary-
ing only alongz.20 We also assume a plane-strain condition,
where the strain is limited to the scan plane of the transducer,
viz., thex,z plane of Fig. 1.

Cross-correlation of the two echo signals obtained be-
fore and after compression is considered. We assume the
elastic properties of the material in the scan plane are isotro-
pic but otherwise arbitrary. We also assume the elastic prop-
erties are constant in the direction perpendicular to the scan
plane, along they axis. In this two-dimensional~2-D! tissue
model, the strain produced throughout the scan plane de-
pends on the distribution of Young’s modulus in the plane,
E(x,z), under the incompressibility condition. To study le-
sion detection, we now consider a sample in which the back-
ground medium is uniform, i.e.,E(x,z)5Eb . Also, near the
center of the sample at depthZ, there is an inclusion of
dimension roughly 2R that is uniformly harder than the
background material, i.e.,E(x,y)5E0 , whereE0.Eb . We
model the resulting strain profile in the scan plane as follows.
Through the center of the inclusion, the strain profile along
the z axis is essentially equivalent to that of the three layer
problem diagrammed in Fig. 2. However, near the edge of
the sample and far from the inclusion, the strain profile along
the z axis is equivalent to that of a uniform sample contain-

ing background material, but with small fluctuations in the
strain caused by the presence of the hard inclusion. The exact
nature of the strain fluctuations will depend on the size,
shape, and location of the inclusion. At positions along thex
axis, between the center and edge of the sample, the strain
profile is some combination of the above two models. There-
fore, we begin modeling the 1-D axial correlation analysis of
the 2-D strain profile by examining two simpler 1-D prob-
lems: the deterministic three-layer problem and the stochas-
tic one-layer problem. Both are described in Section II.

There is reason to assume that the large-scale elastic
properties that determine the appearance of the elastogram
are mostly uncoupled from the small-scale elastic properties
that determine the appearance of the sonogram. To illustrate,
consider the example of a cubic sample of incompressible
soft tissue that is slowly compressed along thez axis. Slow
compression is one way to ensure that the deformations are
static and that only the elastic properties are important, i.e.,
viscous effects are negligible.16 The stressT and strains in
the sample along thez direction are related via Hookes
law:21

Tzz~z!5E~z!szz~z!, ~1!

whereE'3G is Young’s modulus andG is the shear modu-
lus. Equation~1! is valid only when the elasticity of the
medium is isotropic. Since tissue is incompressible~Pois-
son’s ratio'0.5! and responds linearly to the stress for small
displacements, the lateral sides of the sample will bulge out
in proportion toTzz. Strains in thex and y directions are
given by21

sxx~z!5syy~z!52Tzz~z!/2E~z!. ~2!

Note that if the out-of-plane displacement of tissue alongy is
smaller than the corresponding dimension of the pulse-echo
beam profile, then such motion can be ignored. Equations~1!
and ~2! indicate that the static deformations are completely
characterized by features of the shear modulus sinceE'3G.

Consider a second example in which the same tissue
sample is now compressed by a force that varies sinusoidally
in time, at ultrasonic frequencies~1–10 MHz!. The sample
responds to this force by propagating a compressional wave
at the same frequency, but with an amplitude and wavelength
that are determined by the bulk modulus (K) and longitudi-
nal sound speed (cl) of the sample.

22 Morse and Ingard~Ref.
23, p. 430! point out that scattering of the ultrasonic waves is

FIG. 1. Schematic geometry of an elastographic experiment.
FIG. 2. Illustration of precompression~top! and postcompression~bottom!
slices.
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independent ofG. They assert that, if spatial variations inG
about the mean value are small and if their spatial extent~or
correlation length for continuous random media! is larger
than the ultrasonic wavelength, then fluctuations in the shear
modulus do not interact with ultrasound waves. In support of
this assertion, Sarvazyan24 states that the ratio of shear wave
intensity to longitudinal wave intensityI s/I l for comparable
particle displacements in soft tissue is given by the ratio of
shear to longitudinal sound speeds,I s/I l5cs/cl and is small.
Measurements by Madsenet al.25 show that indeed
cs/cl'1022. In addition, the small amount of shear wave
energy that is generated is then locally absorbed because the
attenuation coefficient for shear waves is approximately 104

times that for longitudinal waves. The independence of elas-
tographic and sonographic properties was also demonstrated
in a contrast-detail phantom described by Hallet al. ~Ref. 3,
Fig. 5!. Solid cylinders placed in a liquid background me-
dium showed no sonographic contrast although differences
between the elastic properties of the solids and liquid were
great.

Independence is only possible if the shape of the acous-
tic scatterers is unmodified by the applied force. While the
experimental evidence thus far suggests that such coupling
between the strain and reflectivity profiles is small, it will
decorrelate the pre- and postcompression echo signals if it
exists, as we show below.

B. Echo signal formation

The geometry of a hypothetical elastographic measure-
ment setup is shown in Fig. 1. An ultrasonic array transducer
is mounted in a compressor plate placed in contact with a
sample that is rigidly supported from below. The transducer
transmits broadband pulses and receives echoes from weakly
scattering structures. Microscopically, there are many ran-
dom fluctuations in density and compressibility in the vol-
ume occupied by the pulse, producing a fully developed
speckle pattern throughout the sample. Macroscopically,
however, the sample is elastically uniform except for a hard
inclusion at depthZ, similar to the isoechoic solid cylinders
in the liquid background of the contrast-detail phantom de-
scribed by Hallet al.3 The microscopic variations in elastic-
ity characterize the reflectivity profile, while the macroscopic
variations determine the strain profile and consequently the
axial scaling of the post-compression reflectivity profile.

The reflectivity profile at vector positionx is represented
by an isotropic scattering functionf ~x!. An echo signalr ~x,t!
is formed by scanning the reflectivity profile with a trans-
ducer beam represented by the pulse-echo point spread func-
tion h~x,t!; both are functions of position and time. Math-
ematically, the echo signal is a three-dimensional
convolution between the point spread function and the re-
flectivity profile.26 However, for a stationary point spread
function, the echo signal can be written as a 1-D convolution
along the axis of the sound beam:27

r ~z!5h^ f ~z!1n~z!, ~3!

wherez is the axial distance from the transducer-compressor
to the field point and related to the time of flight viaz5time
3velocity/2. The sign̂ denotes convolution and the func-

tion n(z) represents a signal-independent, zero-mean, spa-
tially uncorrelated noise process, e.g., electronic noise.

In elastography, echo signals are acquired in pairs; the
precompression signal and postcompression signal are distin-
guished by assigning an index of 1 and 2 to the associated
variables, i.e.,

r 1~z!5h1^ f 1~z!1n1~z!

for the precompression signal ~4!

and

r 2~z!5h2^ f 2~z!1n2~z!

for the postcompression signal. ~5!

In the following, it will be explained why we also distin-
guished the point spread functions before and after the com-
pression. The waveform segmentsr 1 and r 2 are compared
using cross correlation. The location of the cross-correlation
peak is employed to estimate the local displacement.

We model the pulse-echo point-spread function of the
imaging systemh(z) as a Gaussian-modulated sinusoid with
center~spatial! frequencyk052p/l0, wherel0 is the wave-
length andLh is the correlation length that determine the
pulse duration:

h~z,k0 ,Lh!5
1

A2pLh
exp~2z2/2Lh

2!sin~k0z!. ~6!

The same function can be written in the spectral domain as

H~k,k0 ,Lh!5
j

2
~exp„2~k1k0!

2Lh
2/2…

2exp„2~k2k0!
2Lh

2/2…!, ~7!

where we have used the Fourier transform convention

h~z!5
1

2p E dk H~k!exp~2 jkz!,

~8!

H~k!5E dz h~z!exp~ jkz!.

Prior to compression, the system response is
H1(k)5H(k,k0 ,Lh). After compression, we may wish to
modify the system response function by changing the wave-
length of the sinusoid and the correlation length. These new
parameters are denoted by primed quantities in the system
response for the postcompression waveform,H2(k)
5H(k,k08 ,Lh8).

The reflectivity profile f (z) is modeled by filtering a
white noise process by the functionp(z). In tissue, the lon-
gitudinal microstructural variation is often represented by a
Gaussian autocorrelation function.28,29 A filter function that
approximates such structural variations is also a Gaussian
function30 that is centered at spatial frequencykf ,

P~k!5 1
2~exp„2~k1kf !

2L f
2/2…1exp„2~k2kf !

2L f
2/2…!,

~9!

whereL f is a correlation length of the reflectivity profile. In
Sec. II, we use the reflectivity spectral autocorrelation func-
tion, ^F* (k1)F(k2)&, where^.& denotes the ensemble aver-
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age operator and* is the complex conjugate operator. One
can show that

^F* ~k1!F~k2!&5N0P* ~k1!P~k2!d~k12k2!, ~10!

whereN0 is the power spectrum level of the uncorrelated
noise process from which the reflectivity profile is realized.
The reflectivity profile function is real, therefore the conju-
gate symmetric property,F* (k)5F(2k), is satisfied.

C. Modeling the strain profile

Little is known about the strain patterns that are pro-
duced in biological tissues under uniform loading conditions.
We suggest that the axial strain profile can be described as
the sum of a mean values̄ and perturbation about the mean
ds, i.e.,

s~z!5 s̄1ds~z!. ~11!

Consider two types of strain profile, namely, deterministic
and stochastic. A deterministic strain profile is known ex-
actly, so that the mean value is given by

s̄5
1

L E
0

L

s~g!dg5
L2L8

L
, ~12!

whereL andL8 are the axial lengths of the tissue before and
after the compression, respectively. With this notation,
s(z)>0.

A stochastic strain profile is a random variable for which
there is complete prior knowledge of its statistical properties.
We define the mean as the ensemble average

s̄5^s~z!&, ~13!

and assume that the strain perturbationds is a wide-sense
stationary, Gaussian-distributed random process with mean
zero and variancess

2. The second-order statistics ofds may
be described by an exponential autocorrelation function

^ds~z!ds~z8!&5ss
2 exp~2uz2z8u/Ls!, ~14!

a Gaussian autocorrelation function

^ds~z!ds~z8!&5ss
2 exp„2~z2z8!2/Ls

2
… ~15!

or a second derivative of a Gaussian~2DG!

^ds~z!ds~z8!&5ss
2
„122~z2z8!2/Ls

2
…

3exp„2~z2z8!2/Ls
2
…, ~16!

where Ls denotes the correlation length of the stochastic
strain profile. We assume that the strain profile varies more
slowly than the reflectivity profile, so thatL f,Ls .

For the deterministic and stochastic cases, the effect of
strain is to deform the longitudinal coordinate axis of the
reflectivity profile, z. This produces a postcompression re-
flectivity profile with a different depth dependence than the
precompression reflectivity profile. The relation between the
two is

f 2„z85g~z!…5 f 1~z!, ~17!

where the transformation for axial strain is defined by

z85g~z!5E
0

z

„12s~g!…dg. ~18!

If the strain is two or three dimensional and the lateral and/or
elevational displacement is greater than the beamwidth, then
some scatterers leave the beam as new scatterers enter. In
that case, we cannot expressf 2 as a rescaled copy off 1 as in
Eq. ~17!.

To write the postcompression reflectivity profilef 2 as a
function of the precompression coordinatez, we need the
inverse relationg21(z8). However an inverse relation is not
easily expressible for an arbitrary strain profile. In the Ap-
pendix, we show that the inverse transform can be approxi-
mated from Eq.~18! for small strains by

z'E
0

z8/~12 s̄!S 11
ds~g!

12 s̄ Ddg. ~19!

With the above coordinate transformation, the postcompres-
sion reflectivity profile can be written in terms of the pre-
compression coordinate axis,

f 2~z!' f 1F z

12 s̄
1bS z

12 s̄D G , ~20!

whereb(z) denotes the displacement given by the integral of
the strain perturbation

b~z!5
1

12 s̄ E0
z

ds~g!dg. ~21!

It has been suggested that there are advantages to
stretchingr 2 by the average or local strains̄ in a preprocess-
ing step before cross correlation withr 1.

4 In that case, the
stretched echo signal, denoted by the subscript 3, becomes

r 3~z!5r 2„~12 s̄!z…

for the stretched postcompression signal.~22!

The advantages of stretching the postcompression signal are
discussed later in Sec. III. Combining Eqs.~5! and ~22!, we
find that f 3(z)5 f 2„(12 s̄)z…, and from Eq.~20!

f 3~z!' f 1„z1b~z!…. ~23!

Since^b(z)&50, then^b2(z)& is the variance of the displace-
ment in the stochastic problem. We note the similarity of Eq.
~21! and the right side of Eq.~23! with the equations that
describe frequency modulation in communication theory.31

When the reflectivity profile is sinusoidal, then loading the
tissue and stretching the resulting reflectivity profile by the
average displacement generates the same equations as those
found in the problem of extracting information from
frequency-modulated signals.

II. ANALYTICAL RESULTS

In this section, we derive the cross-correlation function
between pre- and postcompression signals. Under the as-
sumption of zero-mean noise that is signal independent and
spatially uncorrelated, we concentrate entirely on evaluating
the two-point ensemble average taken at depthsz1 andz2:
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G12~z1 ,z2!5^r 1~z1!r 2~z2!&

5^„h1~z1! ^ f 1~z1!…„h2~z2! ^ f 2~z2!…&. ~24!

We will provide analytic formulas of the above cross corre-
lation for the deterministic and random strain profiles, and
show that the cross correlation is not stationary in the statis-
tical sense. The resulting equations are used to interpret the
effects of static compression on the signal decorrelation and
the variance of the tissue displacement.

A. Deterministic problem

A schematic of the 1-D deterministic problem is shown
in Fig. 2. The figure exhibits an enlarged version of the thin
vertical bar shown at the center of the tissue in Fig. 1. The
bar is segmented into three layers of different elasticities and
therefore strains. Regions I and III are soft background and

region II is a hard inclusion. The inclusion is of size 2R and
is centered at depthZ in a sample of precompression axial
length L. Under static compression, region II strains by an
amounts2. Similarly, background regions I and III strain by
amountss1 ands3, respectively. The average strain as calcu-
lated from Eq.~12! is

s̄5$s3L1~s12s3!Z1~2s22s12s3!R%/L. ~25!

The average strain is measured in an experiment from the
displacement of the compressor-transducer assembly after
compression. The reflectivity profile of the compressed tis-
suef 2 is related to the pre-compression reflectivity profilef 1
by following the transformation rule of Eq.~18!:

f 2~z!5 f 1~az2b!, ~26!

where the variablesa andb take the following forms for the
three regions:

H a51/~12s1!, b50 for 0<z,Z1 ,
a51/~12s2!, b5~s22s1!~Z2R!/~12s2! for Z1<z,Z2 ,
a51/~12s3!, b5~s32s1!Z1~s11s322s2!R/~12s3! for Z2<z,~12 s̄!L,

~27!

and

Z15~12s1!~Z2R!,
~28!

Z25~12s1!~Z2R!12~12s2!R.

If the strain is uniform (s15s25s3), thenb50 for all z.
The cross-correlation function between echo signalsr 1

and r 2 is found by considering any two pointsz1 and z2
located in one of the three regions. Equation~24! can be
written in the Fourier domain as

G12~z1 ,z2!5
1

~2p!2a E E dk1 dk2 H1* ~k1!H2~k2!

3K F1* ~k1!F1S k2a D L
3expF j S k1z12k2z21

k2b

a D G , ~29!

where the values ofa andb depend on the region as defined
by Eq. ~27!. We used the conjugate symmetric property of
the reflectivity function f 1(z). After substituting Eq.~10!
into Eq. ~29! and evaluating the integral overk2, we obtain

G12~z1 ,z2!

5
N0

2p E dk1 H* ~k1 ,k0 ,Lh!H~ak1 ,k08 ,Lh8!

3uP~k1!u2exp„j ~az22z11b!k…. ~30!

Carrying out the above calculation with the system re-
sponse and the filter functions defined in Eqs.~7! and ~9!,
respectively, we find that

G12~z1 ,z2!5
N0

16Apha

expF2ta
21S za

2

ha
2D G

3expS 2
~z12az21b!2

4ha
2 D

3cosS za~z12az21b!

ha
2 D , ~31!

where

ha
25L f

21
Lh
21a2Lh8

2

2
,

ta
25kf

2L f
21

k0
2Lh

21k08
2Lh8

2

2
, ~32!

za5kfL f
21

k0Lh
21ak08Lh8

2

2
.

The estimation problem in elastography is to determine the
displacementz12z2 that best aligns the two echo wave-
forms. That occurs at the correlation lag corresponding to the
peak value ofG12. Equation~30! is similar to the normalized
cross-correlation function of Walker and Trahey@Ref. 32,
Eq. ~19!#. Their expression is for a constant strain profile,
bandpass white pulse spectrum, and white-noise scattering
function, e.g., uncorrelated point scatterers. Above are more
general expressions for a variable strain profile that is
known, Gaussian pulse spectrum, and scattering medium
with finite-size scatterers.
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B. Stochastic problem

For the deterministic problem in the previous subsec-
tion, we were able to computef 2(z) exactly, as in Eqs.~26!–
~28!. For the stochastic problem, however,f 2(z) cannot be
found in the same manner. Instead, we use the approxima-
tion, Eq. ~19!, for the coordinate transformation, Eq.~18!.
From Eqs.~10! and ~20!, we find that Eq.~24! yields

G12~z1 ,z2!5
N0

~2p!2
E E dk1 dk2 H1* ~k1!H2~ āk2!uP~k1!u2

3exp~ j ~k1z12āk2z2!!E dz8

3exp~ j ~k22k1!z8!^exp„2 jk1b~z8!…&, ~33!

whereā51/(12 s̄).
The functionb~.! is defined in Eq.~21! as the cumula-

tive strain perturbation. Sinceds is defined as a zero-mean
Gaussian random process, its integral is also a Gaussian pro-
cess. The characteristic function of the Gaussian random
variableq is ^exp(iq)&5exp~2^q2&/2!,31 so that

^exp~2 jk1b~z8!!&5expS 2
k1
2

2
^b2~z8!& D . ~34!

The variancê b2(z8)& in the above equation is calculated
using Eq.~21! as

^b2~z8!&5ā2E
0

z8E
0

z8
dg dm^ds~g!ds~m!&, ~35!

where the expectation,̂ds(g)ds(m)&, is defined by Eqs.
~14!–~16! for the three autocorrelation models under consid-
eration.

Substituting Eq.~14! into Eq. ~35! and evaluating the
integrals for the exponential autocorrelation function, we ob-
tain

^bE
2~z8!&5ā2ss

2Ls
2FexpS 2

uz8u
Ls

D1
uz8u
Ls

21G . ~36!

Similarly, Eqs.~15! and ~16! yield

^bG
2 ~z8!&5ā2ss

2Ls
2H exp~2z82/Ls

2!21

1Ap
z

Ls
erf~z8/Ls!J ~37!

and

^b2DG
2 ~z8!&5ā2ss

2Ls
2$12exp~2z82/Ls

2!% ~38!

for the Gaussian and second derivative of the Gaussian
~2DG! autocorrelation functions. These equations are the dis-
placement variances for the three autocorrelation models.

Next, we investigate the integral

E dz8 exp~ j ~k22k1!z8!expS 2
k1
2

2
^b2~z8!& D ~39!

in Eq. ~33! for the special cases of Eqs.~36!–~38!. Substitut-
ing Eq. ~36! into Eq. ~39!, we find a series solution using an
identity given by Middleton.33 Substituting that series solu-
tion back into Eq.~33!, however, we were unable to find
closed form solutions for the assumed system responseH~.!

and the filterP~.! functions. Furthermore, we could not
evaluate the integral in Eq.~39! for the Gaussian form, Eq.
~37!. A series solution for Eq.~39! was obtained with the
2DG form of Eq. ~38!. However, the resulting expression
provides no intuition regarding the basic physics of the prob-
lem. Since closed form solutions of Eq.~33! were not found
for the assumed autocorrelation models, we decided to evalu-
ate the lower bounds ofG12, since any improvement in the
lower bound implies an increase in the magnitude of the
cross correlation.

By analyzing the largez8 dependence of Eqs.~36!–~38!,
one can show that the variances are bounded according to

^b2~z8!&<C, ~40!

where

C55
ā2ss

2LsL for the exponential autocorrelation

function,

Apā2ss
2LsL for the Gaussian autocorrelation

function,

ā2ss
2Ls

2 for the 2DG autocorrelation function.
~41!

Note that the values ofC for different autocorrelation models
are very similar. The smallestC value is for the 2DG model,
since the correlation length of the strain profileLs is much
smaller than the length of the sampleL. From the variance
bound, it is clear that the integral in Eq.~39! has a lower
bound given by

E dz8 exp„j ~k22k1!z8…expS 2
k1
2

2
^b2~z8!& D

>expS 2
C

2
k1
2D d~k22k1!. ~42!

Substituting this expression into Eq.~33! and evaluating the
integrals we obtain the worst case scenario for the cross cor-
relation:

G12~z1 ,z2!>
N0

16Aph ā8
expF2t ā

21S z ā
2

h ā8
2D G

3expS 2
~z12āz2!

2

4h ā8
2 D cosS z ā~z12āz2!

h ā8
2 D ,

~43!

where

h ā8
25L f

21
Lh
21ā2Lh8

2

2
1
C

2
~44!

andt ā
2 andz ā are obtained from Eq.~32! by substitutingā

in place ofa. There is a strong similarity between the results
of the deterministic and stochastic problems, Eqs.~31! and
~43!.
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In the next section, we show howG12 for the determin-
istic and stochastic cases depend on parameters of the imag-
ing system and the medium under investigation. Then, we
isolate the variables critical to maximizing the cross-
correlation function.

III. DISCUSSION AND EXAMPLES

A. Deterministic problem

Consider the results of Sec. II A, where the strain profile
has three well-defined layers. The cross-correlation function
for this deterministic problem is described by Eq.~31! and is
plotted in Fig. 3 for typical broadband echo signals. The first
exponential factor on the right-hand side of Eq.~31! scales
G12(z1 ,z2) independent of position in the medium. The sec-
ond exponential factor gives the envelope ofG12(z1 ,z2) its
Gaussian shape. The cosine factor determines the oscillation
frequency and phase ofG12(z1 ,z2). Our objective is to de-
sign experiments so that the peak value ofG12(z1 ,z2) is
maximized with respect to the noise and is large compared to
adjacent peaks. Any process that reduces the maximum
cross-correlation value is a source of signal decorrelation that
should be minimized.

For low input signal-to-noise conditions~S/N is the ratio
of echo-signal power to noise power!, the second exponential
factor and the cosine factor dominate the strain variance be-
cause of ambiguity error.34,35 To reduce this error and cor-
rectly distinguish among the cross-correlation peaks, we
could design the experiment to minimizeha

2 so that the en-
velope ofG12(z1 ,z2) attenuates the adjacent peaks. Alterna-
tively, we could minimizeza/ha

2, which increases the sepa-
ration between cross-correlation peaks. In either case,
ambiguity error is minimized for low input S/N when we use
low center frequency and/or broadband pulses.

For the high input S/N conditions common in medical
imaging, the first exponential factor in Eq.~31!,
exp~2ta

21za
2/ha

2!, is the major factor determining estimation
variance. Displacement uncertainty is due primarily to deco-
rrelation between the pre- and postcompression echo signals.
Decorrelation may be viewed as a mismatch between the
pre- and postcompression echo spectra. Spectral changes
caused by tissue motion have been discussed in detail by

Kallel et al.15 Signal decorrelation is minimum when
2ta

21za
2/ha

250, which may be achieved using one of three
strategies.

The first strategy is to increase the bandwidth of the
pulse so it is large compared with the bandwidth of the tissue
spectrum, i.e.,Lh > Lh8 ! L f . Each scatterer is then resolved
and can be tracked individually. Unfortunately, very broad-
band transducers with sufficient sensitivity to penetrate deep
into the body are not currently available.

The second strategy is to keep the strains small,a>1,
and to match the pulse and tissue spectra,H1(k)>F1(k).
However, small strains produce weak elastographic signals,
which result in low target visibility. Also, if hard inclusion
with different elastic moduli are placed in a soft background,
then large compressions are required to obtain the dynamic
range necessary to differentiate among the hard inclusions.

The third strategy is most promising for many practical
situations that call for moderate pulse bandwidths and mod-
erate tissue strains. As with the second strategy, we choose a
pulse spectrum that matches the tissue spectra, but in addi-
tion we apply two conditioning steps to the postcompression
echo signal, viz., pulse shaping and signal stretching, so that
H1(k)>F1(k)>H2(k)>F2(k) even for moderately large
strains.

1. Shaping the postcompression pulse, h 2(z)

To illustrate the value of signal conditioning, we define
two parameters that quantify the amount of echo-signal
decorrelation. The correlation coefficientr measures the
similarity of two signals, and is defined as

r[
G12 max

AG11 maxG22 max

. ~45!

The peak-ratio PR is another measure of similarity that also
compares signal amplitudes:

PR[
G12 max

G11 max
. ~46!

G11 max andG22 max are peak autocorrelation function values
for the echo signalsr 1 and r 2.

To study the cross-correlation peak for constant-strain
conditions, we isolate the first exponential factor in Eq.~31!
by settingz12az21b50 and then evaluating PR of Eq.~31!
to find

PR5AL f
21Lh

2

ha
2 expS k02Lh22k08

2Lh8
2

2
1

za
2

ha
2

2
~kfL f

21k0Lh
2!2

L f
21Lh

2 D . ~47!

SubstitutingaLh8 5 Lh andk08 5 ak0 into Eq.~47!, we find that
PR51; that is, the pre- and postcompression signals are per-
fectly aligned and there is no signal decorrelation. The cor-
relation coefficientr is also unity under the above condi-
tions. With that substitution, we increase the center
frequencyk08 and reduce the lengthLh8 of the postcompres-
sion ultrasound pulse by the scale factora51/(12s). This
preserves the productLh8k08 5 Lhk0. Sincer and PR are both

FIG. 3. Shows a typical cross-correlation function. The period of the oscil-
lation ish2/z.
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one, it may be possible to eliminate signal decorrelation for
moderate strains provided that parameters of the impulse re-
sponse functionh2(z) are compressed at the same rate as the
medium.

In most experimental situations, the strain profile, and
therefore the parametera, is unknown and varies with depth,
i.e., a(z). It is worthwhile, then, to study howr and PR
change when scaling the postcompression point spread func-
tion according to a constant scale factora.36 That is, for
H2(k) 5 H(k,k08 ,Lh8), let Lh8 5 Lh /a, k08 5 ak0 anda>1.
With this scaling, we find

r5
~L f

21Lh
2!1/4~~a/a!2L f

21Lh
2!1/4

ha/a
expS za/a

2

ha/a
2

2
1

2 H ~kfL f
21k0Lh

2!2

L f
21Lh

2 1
~kfL f

21~a/a!k0Lh
2!2

~a/a!2L f
21Lh

2 J D
~48!

and

PR5AL f
21Lh

2

ha/a
2 expS za/a

2

ha/a
2 2

~kfL f
21k0Lh

2!2

L f
21Lh

2 D . ~49!

Equations~48! and~49! are plotted in Fig. 4 as a function of
a for a constant strain of 10%„a51/~120.1!'1.1…. The in-

terrogating pulse is assumed to have a wavelength and cor-
relation length of 0.3 mm. The solid lines in the figures rep-
resent the perfect alignment case where the pulse and tissue
spectra are exactly matched, i.e.,kf5k0 and L f5Lh50.3
mm. There is no decorrelation ata5a, where we scale the
pulse in the same manner as the tissue compression scales
the axial coordinate of reflectivity spectrum. The dotted
curves are forkf5k0 and L f50.15 mm,Lh50.3 mm, the
dashed curves are forkf5k0 andL f50.3 mm,Lh50.15 mm,
the dot-dashed curves are forkf5k0 and L f50.6 mm,
Lh50.3 mm, and the dot-dot-dashed curves are for
kf51.05k0 andL f50.3/1.05 mm,Lh50.3 mm. The broken
lines represent conditions where the pulse and tissue spectra
are not exactly matched.

Figure 4 shows thatr50.95 and PR50.85 when there is
no pulse shaping~a51.0!. Both functions rise to unity at
a51.1, and fall tor50.97 and PR50.92 ata51.2. Less
decorrelation occurs when the pulse spectrum is broader than
the tissue spectrum~dashed curves!.

The situation is different for the other cases considered.
Varying the width of the tissue spectrum for a constant pulse
spectrum~dotted curves and dot-dashed curves! has severe
effects onr but little effect on PR. The values ofr for a51
are 0.92 and 0.98, indicating that the effect onr is more
pronounced forL f,Lh ~dotted curves! and less pronounced
for L f.Lh ~dot-dashed curves!. Varying the tissue spectra
lowers PR to 0.85 whena51.

The reflectivity spectra for most tissues are unknown, so
it is likely that the spectra for the pulse and the tissue will not
be matched. For example, the dot-dot-dashed lines in Fig. 4
represents the results forkf /k051.05. Because the center fre-
quencies are not matched, the peak in the PR versusa curve,
Eq. ~49!, is greater than one. In fact, anytimekfÞk0 , the
peak of the PR versusa curve will be greater than one: the
peak is located ata.a for kf.k0 and ata,a for kf,k0 .
The advantage of PR overr is its ability to detect conditions
where kfÞk0 . We can exploit the additional information
provided by PR using an iterative strategy:k0 is adjusted
until the peak of the PR versusa curve is approximately one.
At that point, the center frequencies of the pulse and tissue
spectra are matched.

Theestimatedtissue spectrum may not well approximate
the expectedtissue spectrum,F(k), under any measurement
conditions that demand spatial resolution. Short-duration
waveform segments yield noisy estimates ofF(k). Conse-
quently, even whenkf5k0 , the PR versusa curve may not
peak at one. As the amount of stationary independent data
increases, we approach the results of Fig. 4. However, time
averaging is not equivalent to ensemble averaging for esti-
mating the cross-correlation function. At the peak value of
G12(z1 ,z2) in Eq. ~31!, z12az21b50, so that
Dz[z12z25(12a)z21b. In words, the cross-correlation
lag corresponding to the displacement estimateDz is a func-
tion of axial positionz2, so that the postcompression echo
signal r 2 is a nonstationary random process. The greater the
strain, the more nonstationary the signals become.

FIG. 4. Shows the dependence of the correlation coefficientr ~top! and the
peak ratio PR~bottom! on the scaling parametera for the deterministic
problem when a51.1 and k052p/0.3 mm21. Solid line: kf5k0 ,
L f5Lh50.3 mm, dotted line:kf5k0 , L f50.15 mm,Lh50.3 mm, dashed
line: L f50.3 mm, Lh50.15 mm, dot-dashed line:kf5k0 , L f50.6 mm,
Lh50.3 mm, and dot-dot-dashed line:kf51.05k0 , L f50.3/1.05 mm,
Lh50.3 mm.
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2. Stretching the postcompression echo signal, r 2

We can reduce the dependence of the cross-correlation
function on positionz2 by scaling the axial coordinate ac-
cording to the relationr 3(z3)5r 2„(12 s̄)z3… before perform-
ing the cross correlation. Scaling the coordinatez2 is equiva-
lent to stretching the postcompression echo signalr 2(z2).
Following the development in Sec. III A, it is straightforward
to deriveG13(z1 ,z3). The only difference is the arguments of
the last two factors on the right-hand side of Eq.~31! change
from (z12az21b) to (z12(12 s̄)az31b). The correlation
lag at the peak of G13(z1 ,z3) is Dz5z12z3
5„12(12 s̄)a…z31b. For a homogeneous strain profile,
wherea51/(12 s̄), r 3 is a stationary process. The effects of
pulse shaping and stretching are illustrated in Fig. 5. For
inhomogeneous strain profiles, the positional dependence of
the correlation lag is not eliminated but weakened, sinceu(1
2 s̄)au<uau. In elastography, we assume the echo signals are

wide-sense stationary over the window lengthW, so that the
spatial averageW*2W/2

W/2 r 1(z22z)r 2(z2)dz2 may be used to
estimate the ensemble average^r 1(z1)r 2(z2)&. Stationarity is
more nearly achieved when the postcompression signal is
linearly stretched according to the mean strain, particularly
when the strain variations along the profile are small, e.g.,
for inclusions with low elastic contrast.

B. Stochastic problem

Consider the results of Sec. II B, where the strain profile
for the entire sample length is known statistically. The cross-
correlation function for this stochastic problem, Eq.~43!, is
very similar to that of the deterministic problem, Eq.~31!. In
the limit where the variations in strain are zero, the bound
valueC in Eq. ~41! is zero and the two equations are equal.
If the statistical properties of the strain variationsds are
known, then Eq.~43! may be used to design measurements
that minimize the uncertainty in displacement estimates in a
manner similar to the discussion above for the deterministic
problem.

The values ofC corresponding to the Gaussian and ex-
ponential models for strain correlation, Eq.~41!, are very
conservative in the sense that they probably overestimate the
amount of decorrelation error caused by actual strain varia-

FIG. 5. Spectral effects of conditioning the postcompression echo signal are
illustrated. ~a! Without signal conditioning, the height of the cross-
correlation functionG(z1 ,z2) at its peak,z25(z11b)/a, is given by the
cross-hatched area via Eqs.~29!–~31!. The center frequency and bandwidth
of the postcompression reflectivity spectrumF2 are shifted by the factor
a51/~12s! because of compression.~b! The compressed tissue may be
interrogated by pulse spectrumH2 that has been modified in the same man-
ner as the tissue spectrum.~c! Stretching the echo signal by the factor 1/a
provides a good match between the pre- and postcompression spectra. As a
result, the height of the cross-correlation peak~cross-hatched area! is greater
for the conditioned signals in part~c! than for the unconditioned signals in
part ~a!.

FIG. 6. Shows the dependence of the correlation coefficientr ~top! and the
peak ratio PR~bottom! on constantC for the stochastic problem. The iden-
tification ~I! is for a5ā51.1 and~II ! is for a51.0 andā51.1. k052p/0.3
mm21, solid lines:kf5k0 , L f5Lh50.3 mm, dotted lines:kf5k0 , L f50.15
mm, Lh50.3 mm, dashed lines:L f50.3 mm, Lh50.15 mm, dot-dashed
lines: kf5k0 , L f50.6 mm, Lh50.3 mm, and dot-dot-dashed lines:
kf51.05k0 , L f50.3/1.05 mm,Lh50.3 mm.
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tions. The second derivative of the Gaussian~2DG! may be a
more realistic model for describing the second-order statis-
tics of strain variations in tissue. The zero-mean feature of
the function is consistent with the notion that strain is con-
served. Unlike the Gaussian and exponential forms, the 2DG
model does not accumulate errors caused by strain variations
throughout the entire sample lengthL. It emphasizes local
variations, which results in reduced values forC and less
signal decorrelation.

We now examiner and PR obtained from Eqs.~41!–
~44!,

r>
~L f

21Lh
2!1/4~~ ā/a!2L f

21Lh
2!1/4

h ā /a8
expS z ā /a

2

h ā /a82

2
1

2 H ~kfL f
21k0Lh

2!2

L f
21Lh

2 1
~kfL f

21~ ā/a!k0Lh
2!2

~ ā/a!2L f
21Lh

2 J D
~50!

and

PR>AL f
21Lh

2

h ā /a82
expS z ā /a

2

h ā /a82
2

~kfL f
21k0Lh

2!2

L f
21Lh

2 D . ~51!

We are particularly interested in the dependence ofr and PR
on the constantC whose values are given in Eq.~41! for all
three autocorrelation models. Figure 6 illustrates how strain
variance increases signal decorrelation throughr and PR.
Curves labeled I and II in Fig. 6 are fora5ā51.1 and
a51.0, respectively; atC50 the values in Fig. 6 are the
same as those in Fig. 4. Solid curves are calculated for
kf5k0 and L f5Lh50.3 mm; the dotted curves are for
kf5k0 andL f50.15 mm,Lh50.3 mm; the dashed curves are
for kf5k0Lh50.15 mm; the dot-dashed curves are for
kf5k0 and L f50.6 mm, Lh50.3 mm; and the dot-dot-
dashed curves are forkf51.05k0 and L f50.3/1.05 mm,
Lh50.3 mm. Figure 6 shows that echo-signal correlation is
reduced asC increases. The decline inr at greater strain

variability is slower than it is for PR. The decline for PR is
almost at the same rate for all the above configurations stud-
ied. The rate of decorrelation is approximately equal to

~kfL f
21k0Lh

2!2

2~L f
21Lh

2!2
. ~52!

Equation~41! gives the values ofC for the three autocorre-
lation models that describe the random strain field. The 2DG
strain model predicts that strain variability causes much less
signal decorrelation than the Gaussian model. Experimental
studies are needed to determine which if any of these models
for ds is most appropriate.

Further examination of Eqs.~43! and~44! shows that the
main effect of strain variations onG12 for high input S/N is to
reduce its amplitude via the first exponential factor on the
right-hand side. The reduction in peak amplitude is caused
by echo-signal decorrelation. At low input S/N, the strain
variance improves displacement estimation performance by
increasing the period ofG12 oscillations via the cosine factor,
but also hinders performance by increasing the width of the
Gaussian roll-off via the second exponential factor. Overall,
random strain variations are expected to increase displace-
ment uncertainty by an amount that depends on statistical
properties of the strain variation. As with the deterministic
problem, pulse scaling and linear stretching minimize echo-
signal decorrelation caused by inhomogeneities in the strain
profile.

C. Testing the validity of Eq. (19)

The reliability of the results for the stochastic problem in
the previous section depends on the accuracy of the approxi-
mate inverse-coordinate transformation given by Eq.~19!.
We used the three-layer deterministic example diagrammed
in Fig. 2 to assess the accuracy of the approximation. Equa-
tion ~20! provides estimates of the reflectivity profiles in the
three regions:

f 2 app~z!5H f 1~~11ā~s12 s̄!!āz!, 0<z,Z1 ,
f 1~~11ā~s22 s̄!!āz1ā2~s12s2!Z1!, Z1<z,Z2 ,
f 1~~11ā~s32 s̄!!āz1ā2~s12s2!Z11ā2~s22s3!Z2!, Z2<z,~12 s̄!L,

~53!

whereā51/(12 s̄) and the average strains̄ is defined in Eq.
~25!. We now test the validity of the above approximation by
comparison with the exact solution of Eqs.~26!–~28! under
the following conditions.

Consider a sample of lengthL59 cm containing a hard
inclusion of size 2R53 cm that is centered atZ54.5 cm
from the transducer. The strain values in the background
regions ares150.17 ands350.13 but within the inclusion
s250.03. From Eq.~25! we find s̄50.11. For simplicity, we
simulated the precompression reflectivity profilef 1(z) as a
sine wave with a 300-mm wavelength. Because of the limited
spatial resolution of the display, we can not show the 300
mm ~33.3 cycles/cm! variations on the scale of the 9-cm

waveform, so we used the wavelet transform~WT! to view
the effects. The WT is well suited to our purpose because it
represents thelocal spatial-frequency content of the signal.

Figure 7 displays the WT calculations carried out using
the commercially available software packageMATLAB ®. Fig-
ure 7~a! shows the WT of the precompression reflectivity
profile f 1(z) as well as broadband and narrow-band system
response pulsesh(z). The ultrasonic echo signal is obtained
by convolving one of the two system response functions with
the reflectivity profile along the horizontal axis. Sincef 1(z)
is the same sine wave across all three layers~there is no
sonographic contrast!, the WT representation of the precom-
pression reflectivity profile is a horizontal stripe at 33.3
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FIG. 7. Compares the precompression, postcompression, and stretched re-
flectivity profiles using time-frequency representation:~a! shows precom-
pression reflectivity profile as well as broadband and narrow-band system
response functions.~b! and ~c! show the postcompression reflectivity pro-
files obtained using exact and approximate coordinate transformations. The
strains in each regions are assigned ass150.17,s250.03,s350.13.~d! and
~e! are obtained by stretching the signals in~c! and ~d!, respectively.
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cycles/cm. Note that Fig. 7~a! through~e! represents the ob-
ject function and not the echo signal. Figure 7~b! and ~c!
display the WTs of the postcompression reflectivity profiles
for the exact and approximate transformations,f 2(z) and
f 2app(z), respectively. Because the strains in the three regions
are different, the frequency contents of the postcompression
reflectivity profiles vary. Greater deformations in the soft
regions~I and III! increase the frequency of the spectral peak
in those regions, i.e.,kf8 . kf . Since the productskfL f and
kf8L f8 are conserved, the bandwidth of a broadband reflectiv-
ity profile would increase in proportion tokf8 . The hard cen-
tral region, however, is deformed very little. Consequently,
the strain is small and the frequency of the spectral peak in
Fig. 7~b! and ~c! remains close to 33.3 cycles/cm. Strain
discontinuities at the boundaries produce the broad spectral
responses seen at 2.5 and 5.5 cm. The WT in Fig. 7~c!,
obtained from the approximation of Eq.~53!, is in good
agreement with Fig. 7~b!, obtained from the exact formulas
of Eqs. ~26!–~28!. This indicates that the approximation is
close to the exact solution for 1-D motion, even if the strains
are large.

As discussed in Sec. III A 2, we can use the average
strain to improve the quality of local displacement estimates
by linearly stretching the postcompression profiles. Figure
7~d! and ~e! display the WTs of the exact and approximate
reflectivity profiles,f 3(z) and f 3app(z), that were obtained by
linearly stretchingf 2(z) and f 2app(z) according to the aver-
age strains̄50.11. Stretching scales down the peak fre-
quency at all positions alongz, so that the average peak
frequency overL equals the precompression value of 3.33
cycles/cm. Comparing Fig. 7~d! and~e! with ~a!, we see that
the peak frequencies in the softer regions~I and III! remain
greater than the average while the peak frequency in the
harder region~II ! is less than the average. There is no signal
decorrelation at positions alongz where the local displace-
ment equals the average displacement@b(z)50 in Eq. ~23!#.
Using this property it may be possible to develop an iterative
process to reconstruct the displacement profile from the pre-
and postcompression signals.

IV. SUMMARY

The 2-D strain profile for a compressed medium con-
taining an inclusion of arbitrary shape has been analyzed by
studying two simpler 1-D problems: a three-layer determin-
istic strain profile and a one-layer stochastic strain profile.
The ultrasonic scattering structure of the medium is modeled
as a random continuum characterized by a Gaussian autocor-
relation function. A Gaussian pulse spectrum is also as-
sumed. Closed-form expressions for the cross-correlation
functions were derived and used to design elastographic ex-
periments for low and high input S/N conditions. The effects
that correlations in the scattering structure, variations in the
strain profile, cross-correlation window lengths, and the cen-
ter frequency and bandwidth of the ultrasound pulse have on
displacement estimates could all be determined using these
expressions.

The advantages of shaping the postcompression pulse
and stretching the postcompression echo signal prior to cross

correlation were found to be significant. Signal stretching
decreases the positional dependence of the cross-correlation
function over the window length, decreasing signal decorre-
lation. It is also important to match the pulse spectrum to the
backscatter tissue spectrum to minimize decorrelation, par-
ticularly at high S/N. Pulse shaping is a method for matching
the pulse and tissue spectra. A few simple conditioning steps
can greatly reduce signal decorrelation, which is a major
source of uncertainty in elastographic measurements.
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APPENDIX

Consider a strain profile for a sample of lengthL:

s~z!5 s̄1ds~z!, ~A1!

which is written as the sum of an average component,

s̄5
1

L E
0

L

s~g!dg, ~A2!

and a fluctuating component,ds(z). The pre- and postcom-
pression coordinates,z and z8, are related through the ex-
pression

z85E
0

z

„12s~g!…dg. ~A3!

We first differentiate Eq.~A1! with respect toz, then invert,
and finally approximate the resulting equation by

dz

dz8
5~12 s̄!21S 12

ds~z!

12 s̄ D 21

'S 11
ds~z!

12 s̄ D Y~12 s̄!

~A4!

for uds(z)u!12 s̄ and 0<z<L. Sinces(z)'s(z8/(12 s̄)),
Eq. ~A4! can be rewritten in integral form

z5E
0

z8/~12 s̄!S 11
ds~g!

12 s̄ Ddg. ~A5!
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