Deformation models and correlation analysis in elastography
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Cross-correlation functions are derived with the purpose of determining how strain inhomogeneities
affect the displacement estimates used in ultrasound-based elastography. Variations in the strain
profile occur in most imaging situations and are caused by fluctuations in the stress field or elastic
modulus of the sample. An analytical framework for developing signal processing strategies in
elastography is described, and the limitations of correlation-based methods for measuring
displacements in tissuelike media caused by static compression are emphasized. This paper includes
(1) an accurate approximation for an inverse coordinate transformation that relates pre- and
postcompression reflectivity profiles of the medi&) a derivation of the echo-signal
cross-correlation function in media with deterministic or stochastic strain profiesjathematical

and graphical descriptions of the consequences that nonuniformities in the strain profile impose
upon the uncertainty of displacement estimation; @)c demonstration of the advantages of echo
signal conditioning and ultrasonic-pulse shaping to reduce the nonstationary effects that attenuate
the cross-correlation peak and reduce the signal-to-noise ratio for displacement estimation.
© 1996 Acoustical Society of America.

PACS numbers: 43.80.Cs, 43.80.Ev, 43.80.0Qf

INTRODUCTION strain tensor are computed and strain images are formed.
With prior knowledge of the test medium, the calculated

Elastography is an application of the palpation principlestrain tensor may be substituted into the constitutive equa-

that offers the possibility of increased sensitivity and spatiatijons of continuum mechanics to reconstruct elastic modulus
resolution for detecting changes in elastic properties deep iﬁnagesl.*"””The term “elastogram” can refer to either strain

the body- Physicians have long recognized the value of Palimages or elastic modulus images. Elastic modulus images

pation as a diagnostic technique for detecting disease. During, preferred because they more accurately represent the in-

a physical examination, a physician's hand is used to apply ginsjc properties of the tissue and can maximize the inherent

small force to the patient’s skin surface while the finger tipstarget contrast by reducing artifacts caused by stress
sense for increases in tissue stiffness that could indicate t%nuniformitie§6

presence of a mass near the surface. Palpation is the basis of The elastic modulus that is calculated by straining the

self-examination for deteptmg breast and testicular Cancelyssue is substantially different from the elastic modulus de-
However, no current diagnostic test measures eIaSt'C't¥ermined from the average wave speed in the medium. The
quantitatively. former is a macroscopic feature of the material structure and

. UItra}sonlc 'maging Of. the brgast is known to add neWthe later is a microscopic feature of the structure. This dif-
information to standard diagnostic procedures, such as x—ragy

mammography, and in some situations decreases the need tﬁrrer\\{ce ha,s beergj ()le(?j\iztég( f(‘)S Zo“d mgczhanlc(;s Or: metals;
surgical biopsy. For example, sonography can indicate e Young's modulug( yne cni®) and shear

whether a palpable mass is cystic or solid. This im‘ormatior{m’dUIUS (~800x10° dyne cm %) among steels are nearly
is important for evaluating masses not visible in radiographi{"€ Same although the ultimate strengths vary a great deal
cally opaque breasts and other diagnostic situations. Howd€Pending on the crystalline St”_JCtL}FeWh'Ie the elastic
ever, some solid lesions, such as invasive papillary carcimoduli of metals are “.s'tructurallymsensmve,” the strengths
noma, are not visible with sonographylt has been &re "structurally sensitive.” _ o
demonstrated in phantoms thBtmode images can fail to The ultimate goal of our effort is to maximize the low-
show solid inclusions positioned in a fluid backgrodnd. contrast detectability of elastography for soft biological tis-
Therefore detection of low-contrast lesions may be improve@ues. To achieve this goal, it is essential to understand how
by adding quantitative information about tissue elasticity. t0 adjust experimental parameters and signal processing vari-
In elastography, local tissue deformations produced bybles to ensure a large sharp peak in the cross-correlation
external compression are measured in order to describe tfgnction, and thereby obtain accurate displacement esti-
spatial distribution of elasticity. It is well known that ultra- mates. This paper summarizes our analysis of echo-signal
sonic echo signals can be used to measure tissue displacgoss correlation that is the basis of elastographic image for-
ment and straii-*®> A common procedure is to cross corre- mation. We study how properties of the instruments and the
late echo signals received before and after statidissue determine features of the cross-correlation function,
compression. The maximum value of the cross-correlatiomnd explain the advantages gained by processing signals be-
function is used to locate the average displacement in thdbre correlation. In particular, stretching the postcompression
region. From displacement estimates, components of thecho signal and/or shaping the ultrasonic pulse can signifi-
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FIG. 1. Schematic geometry of an elastographic experiment.
FIG. 2. lllustration of precompressiditop) and postcompressiofotton)
slices.
cantly increase the magnitude of the cross-correlation func-

tion. Section | summarizes our assumptions regarding elastfqg .baCkgmlénS ;r;]aterlal, but W]it?h sr;:alldf'lucltua}tlon?”:n the ¢
properties of soft biological tissues and echo-signal forma>'rain caused by the presence ot the hard inclusion. 1he exac
ature of the strain fluctuations will depend on the size,

tion that are essential to the description of tissue motior’ X . X "
hape, and location of the inclusion. At positions alongxhe

within the scan plane of the transducer. In Sec. I, we derive bet th ; d ed £ th le. the strai
cross-correlation functions for tissuelike media that exhibitax'?.’I etween the le.n ?.r an fti gebo te sampde,l '(I?hs rain
deterministic and stochastic strain profiles. In Sec. I, weProlie IS Some combination ot the above two moadels. 1here-

discuss the results of the analysis by showing how modificatore' we begin modeling the 1-D axial correlation analysis of

tions to the experiment and processing of the echo signal@e 2_'D strain prpf!le_by examining two simpler 1-D prob-
can reduce displacement errors. Finally, we conclude with (lj‘ems. the deterministic three-layer problem and the stochas-
summary in Sec. IV ' tic one-layer problem. Both are described in Section Il.

There is reason to assume that the large-scale elastic
properties that determine the appearance of the elastogram
I. BACKGROUND are mostly uncoupled from the small-scale elastic properties
A. Assumptions that c_ietermine the appearance (_)f the sonogram. To iIIustrate,
consider the example of a cubic sample of incompressible
Consider a uniaxial loading of an incompressible tissuesgft tissue that is slowly compressed along haxis. Slow
sample along the axis as defined by the axis of the ultra- compression is one way to ensure that the deformations are
sound beam. Uniaxial loading will occur when the dimen-static and that only the elastic properties are important, i.e.,
sions of coaxial, planar compressor plates are larger than thgscous effects are negligiblé.The stressT and strains in

sample dimension$ as in Fig. 1, or when One compressor the sample along the direction are related via Hookes
plate is smaller than the sample but appropriately shaped tg,y-21

produce a stress field that is constant in he plane, vary-

ing only alongz.2° We also assume a plane-strain condition, 1242 =E(2)S;42), @

where the strain is limited to the scan plane of the transducewhereE~3G is Young’s modulus an is the shear modu-

viz., thex,z plane of Fig. 1. lus. Equation(1) is valid only when the elasticity of the
Cross-correlation of the two echo signals obtained bemedium is isotropic. Since tissue is incompressiti®is-

fore and after compression is considered. We assume thshn’s ratio~0.5) and responds linearly to the stress for small

elastic properties of the material in the scan plane are isotradisplacements, the lateral sides of the sample will bulge out

pic but otherwise arbitrary. We also assume the elastic propin proportion toT,,. Strains in thex andy directions are
erties are constant in the direction perpendicular to the scagiven by

plane, along theg axis. In this two-dimensiongPR-D) tissue

model, the strain produced throughout the scan plane de- Sx(2) = 8yy(2)= ~ T, {2)/2E(2). (2)
pends on the distribution of Young’'s modulus in the plane,Note that if the out-of-plane displacement of tissue alprig)
E(x,z), under the incompressibility condition. To study le- smaller than the corresponding dimension of the pulse-echo
sion detection, we now consider a sample in which the backbeam profile, then such motion can be ignored. Equaiibns
ground medium is uniform, i.eE(x,z) =E, . Also, near the and(2) indicate that the static deformations are completely
center of the sample at dep#, there is an inclusion of characterized by features of the shear modulus de8G.
dimension roughly R that is uniformly harder than the Consider a second example in which the same tissue
background material, i.eE(x,y)=E,, whereE,>E,. We  sample is now compressed by a force that varies sinusoidally
model the resulting strain profile in the scan plane as followsin time, at ultrasonic frequencigd—10 MH2. The sample
Through the center of the inclusion, the strain profile alongresponds to this force by propagating a compressional wave
the z axis is essentially equivalent to that of the three layerat the same frequency, but with an amplitude and wavelength
problem diagrammed in Fig. 2. However, near the edge ofhat are determined by the bulk modulus§)(and longitudi-

the sample and far from the inclusion, the strain profile alongnal sound speed() of the samplé? Morse and IngardRef.
the z axis is equivalent to that of a uniform sample contain-23, p. 430 point out that scattering of the ultrasonic waves is
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independent of5. They assert that, if spatial variations®  tion n(z) represents a signal-independent, zero-mean, spa-
about the mean value are small and if their spatial ex@@nt tially uncorrelated noise process, e.g., electronic noise.
correlation length for continuous random media larger In elastography, echo signals are acquired in pairs; the
than the ultrasonic wavelength, then fluctuations in the shegrecompression signal and postcompression signal are distin-
modulus do not interact with ultrasound waves. In support ofjuished by assigning an index of 1 and 2 to the associated
this assertion, SarvazyArstates that the ratio of shear wave variables, i.e.,
intensity to longitudinal wave intensitl/1, for comparable
particle displacements in soft tissue is given by the ratio of
shear to longitudinal sound speetig],=cJ/c, and is small. for the precompression signal (4)
Measurements by Madseretal?® show that indeed
c/c,~10"2 In addition, the small amount of shear wave and
energy that is generated is then locally absorbed because the r,(z)=h,®f,(z)+n,(2)
attenuation coefficient for shear waves is approximatefly 10
times that for longitudinal waves. The independence of elas-
tographic and sonographic properties was also demonstratgd the following, it will be explained why we also distin-
in a contrast-detail phantom described by Hlhl. (Ref. 3,  guished the point spread functions before and after the com-
Fig. 5. Solid cylinders placed in a liquid background me- pression. The waveform segmemtsandr, are compared
dium showed no sonographic contrast although differencegsing cross correlation. The location of the cross-correlation
between the elastic properties of the solids and liquid wergeak is employed to estimate the local displacement.
great. We model the pulse-echo point-spread function of the
Independence is only possible if the shape of the acousmaging systenh(z) as a Gaussian-modulated sinusoid with
tic scatterers is unmodified by the applied force. While thecenter(spatia) frequencyky,=2m/\,, where), is the wave-
experimental evidence thus far suggests that such couplingngth andL,, is the correlation length that determine the
between the strain and reflectivity profiles is small, it will pulse duration:
decorrelate the pre- and postcompression echo signals if it
exists, as we show below.

ri(2)=h;®f1(z)+ny(z)

for the postcompression signal. 5)

h(z,kg,Lp) = exp( — z%/2L2)sin(kyz). (6)

1
JamLy

) ) The same function can be written in the spectral domain as
The geometry of a hypothetical elastographic measure-

ment setup i; shown in Fig. 1. An ultrasonic'array transd'ucer H(kKo,Lp) = J (exp(—(k+ko)2Lﬁ/2)

is mounted in a compressor plate placed in contact with a 2

sample that is rigidly supported from below. The transducer

transmits broadband pulses and receives echoes from weakly —exp(—(k—ko)2L/2)), @)

scattering structures. Microscopically, there are many ranwhere we have used the Fourier transform convention

dom fluctuations in density and compressibility in the vol-

ume occupied by the pulse, producing a fully developed h(z)=i J dk H(k)exp(—jkz),

speckle pattern throughout the sample. Macroscopically, 2m

however, the sample is elastically uniform except for a hard 8

inclusion at depttz, similar to the isoechoic solid cylinders H(k):f dz hz)exp(jkz).

in the liquid background of the contrast-detail phantom de-

scribed by Hallet al® The microscopic variations in elastic- Prior to compression, the system response is

ity characterize the reflectivity profile, while the macroscopicH (k) =H(k,kq,L}). After compression, we may wish to

variations determine the strain profile and consequently thenodify the system response function by changing the wave-

axial scaling of the post-compression reflectivity profile.  length of the sinusoid and the correlation length. These new
The reflectivity profile at vector positionis represented parameters are denoted by primed quantities in the system

by an isotropic scattering functidifx). An echo signaf (x,t)  response for the postcompression waveforH,(k)

is formed by scanning the reflectivity profile with a trans- =H(k,kg,L},).

ducer beam represented by the pulse-echo point spread func- The reflectivity profilef(z) is modeled by filtering a

tion h(x,t); both are functions of position and time. Math- white noise process by the functig{z). In tissue, the lon-

ematically, the echo signal is a three-dimensionalgitudinal microstructural variation is often represented by a

convolution between the point spread function and the reGaussian autocorrelation functiéh?® A filter function that

flectivity profile?® However, for a stationary point spread approximates such structural variations is also a Gaussian

function, the echo signal can be written as a 1-D convolutiorfunctiort® that is centered at spatial frequericy,

along the axis of the sound be&h: P(K) = 3(exp(— (k+ k;)2L212) + exp(— (K—kp)2L2/2)),
r(z)=h®f(z)+n(z), (3 9
wherez is the axial distance from the transducer-compressowhereL; is a correlation length of the reflectivity profile. In

to the field point and related to the time of flight isctime ~ Sec. Il, we use the reflectivity spectral autocorrelation func-
Xvelocity/2. The sign® denotes convolution and the func- tion, (F*(k;)F(k,)), where(.) denotes the ensemble aver-

B. Echo signal formation
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age operator and is the complex conjugate operator. One z
can show that Z’=9(2)= fo(l—S( y)dy. (18
(F* (k1)F(k2)) =NoP* (kp) P(kz) 8(ky — k), (10 If the strain is two or three dimensional and the lateral and/or

where N, is the power spectrum level of the uncorrelatedelevational displacement is greater than the beamwidth, then
noise process from which the reflectivity profile is realized.some scatterers leave the beam as new scatterers enter. In
The reflectivity profile function is real, therefore the conju- that case, we cannot exprefssas a rescaled copy éf as in

gate symmetric propertys* (k) =F (—k), is satisfied. Eg. (17).

To write the postcompression reflectivity profiig as a
function of the precompression coordinatewe need the
inverse relatiorg1(z'). However an inverse relation is not
easily expressible for an arbitrary strain profile. In the Ap-

Little is known about the strain patterns that are pro-pendix, we show that the inverse transform can be approxi-
duced in biological tissues under uniform loading conditionsmated from Eq(18) for small strains by
We suggest that the axial strain profile can be described as

C. Modeling the strain profile

the sum of a mean valugand perturbation about the mean 7~ jzrl(l_s)( 1+ 55(2 dy. (19
os, i.e., 0 1-
s(z)=s+ 85(2). (11  With the above coordinate transformation, the postcompres-

. . . ~__ sion reflectivity profile can be written in terms of the pre-
Consider two types of strain profile, namely, deterministiccompression coordinate axis,

and stochastic. A deterministic strain profile is known ex-
z z
_ R
1-s B (1—?}

actly, so that the mean value is given by

— 1 (L L-L'

$= L Jo s(y)dy= L (12 Where,B(z) denotes_the displacement given by the integral of

the strain perturbation
whereL andL’ are the axial lengths of the tissue before and
. . . . . 1 z

after the compression, respectively. With this notation, B(2)= _f 5s(y)dy. (21)
s(z)=0. 1-s Jo

A stochastic strain profile is a random variable for which
there is complete prior knowledge of its statistical properties
We define the mean as the ensemble average

fa(2)~f, ; (20

It has been suggested that there are advantages to
stretchingr, by the average or local stragin a preprocess-
ing step before cross correlation with.* In that case, the
s_=<s(z)>, (13) stretched echo signal, denoted by the subscript 3, becomes

and assume that the strain perturbatiémis a wide-sense '3(2)=r2((1-9)2)
stationary, Gaussian-distributed random process with mean
zero and variance?. The second-order statistics 88 may

be described by an exponential autocorrelation function ~ The advantages of stretching the postcompression signal are
discussed later in Sec. Ill. Combining E¢S) and (22), we

for the stretched postcompression signal(22)

(85(2)85(2')) =0 exp(—|z—2'|ILy), (14 find thatf4(z) = f,((1—9)2), and from Eq.(20)
a Gaussian autocorrelation function fa(2)~f1(z+ B(2)). (23
(85(2)8s(2'))y= 05 exp(—(z—2")?ILY) (19  Ssince(B(2))=0, then(8%(z)) is the variance of the displace-

ment in the stochastic problem. We note the similarity of Eq.
(21) and the right side of Eq(23) with the equations that
(8s(z) 6s(z’)>=aﬁ(l—Z(z—z’)Z/Lg) describe frequency modulation in communication thebdry.
When the reflectivity profile is sinusoidal, then loading the
Xexp(—(z=2)?IL)), 18 fissue and stretchin)g/; Ifhe resulting reflectivity profile b%/ the
where L denotes the correlation length of the stochasticaverage displacement generates the same equations as those
strain profile. We assume that the strain profile varies moréound in the problem of extracting information from
slowly than the reflectivity profile, so that<L. frequency-modulated signals.
For the deterministic and stochastic cases, the effect of
strain is to deform the longitudinal coordinate axis of the
reflectivity profile, z. This produces a postcompression re-; ANALYTICAL RESULTS
flectivity profile with a different depth dependence than the
precompression reflectivity profile. The relation between the In this section, we derive the cross-correlation function
two is between pre- and postcompression signals. Under the as-
., _ sumption of zero-mean noise that is signal independent and
f2(2' =9(2))=11(2), (17) spatially uncorrelated, we concentrate entirely on evaluating
where the transformation for axial strain is defined by the two-point ensemble average taken at depthsnd z,:

or a second derivative of a Gaussi@bG)
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[1x(21,25) =(r1(z1)r2(2,)) region Il is a hard inclusion. The inclusion is of sizR 2nd
is centered at deptd in a sample of precompression axial
=((h1(z1)®F1(21))("2(22)©12(22))). (249 |ength L. Under static compression, region I strains by an
We will provide analytic formulas of the above cross corre-amounts,. Similarly, background regions I and IlI strain by
lation for the deterministic and random strain profiles, and@mountss; ands;, respectively. The average strain as calcu-
show that the cross correlation is not stationary in the statisated from Eq.(12) is
tical sense. The resulting equations are used to interpret the S_:{S3L+(Sl_33)z+(232_51_33)R}/L.

. . ) ! 25
effects of static compression on the signal decorrelation and o ) ) 29
the variance of the tissue displacement. The average strain is measured in an experiment from the

displacement of the compressor-transducer assembly after
A. Deterministic problem compression. The reflectivity profile of the compressed tis-

i . ] suef, is related to the pre-compression reflectivity profile
A schematic of the 1-D deterministic problem is shown by following the transformation rule of EG18):

in Fig. 2. The figure exhibits an enlarged version of the thin

vertical bar shown at the center of the tissue in Fig. 1. The f2(2)=fi(@z—b), (26)
bar is segmented into three layers of different elasticities ana/here the variablea andb take the following forms for the
therefore strains. Regions | and Ill are soft background andhree regions:

a=1/(1-s;), b=0 for O0sz<Z,,
a=1/(1-s;), b=(s,—5)(Z—R)/(1—s,) for Z,<z2<Z,, 27
a=1/(1—s;), b=(S3—S;)Z+(s;+53—2s,)R/(1—s3) for Z,<z<(1-Ss)L,

and No 4
T1x(21,25)= ex;{ — 24
Z,=(1-5,)(Z-R), R T T
28)
Z,=(1-5)(Z-R)+2(1-$,)R. Xen{_ﬁﬁziéiEi
4}

If the strain is uniform §;=s,=s,), thenb=0 for all z.

The cross-correlation function between echo sigmals {(zy—az,+b)
andr, is found by considering any two points and z, X co 7 , (31)
located in one of the three regions. Equati@4) can be
written in the Fourier domain as where
1 *
Pilz22)= oz | | dk dke HE () Ha(ko)  Leans
e
ky
X<Fi(kl)Fl(g)> 2 2 2 12
koLp+ko“Ly
kb AL (32
X eX[{J ( klzl_ k222+ ? ) (29)
2 12
where the values ad andb depend on the region as defined L=k L2+ KoLh+akolp
by Eg. (27). We used the conjugate symmetric property of am e 2 '

the reflectivity functionf,(z). After substituting Eq.(10)
into Eq. (29) and evaluating the integral ovip, we obtain  The estimation problem in elastography is to determine the
displacementz, —z, that best aligns the two echo wave-

I'1A21,2,) forms. That occurs at the correlation lag corresponding to the
N peak value of’;,. Equation(30) is similar to the normalized
=_9 j dky, H* (kq,ko,Lp)H(aky,kg,Lp) cross-correlation function of Walker and Trahfyef. 32,
2m Eq. (19)]. Their expression is for a constant strain profile,
X|P(kq)|*exp(j(az;— 2, +b)k). (30) bandpass white pulse spectrum, and white-noise scattering

function, e.g., uncorrelated point scatterers. Above are more

Carrying out the above calculation with the system re-general expressions for a variable strain profile that is

sponse and the filter functions defined in E¢8.and (9), known, Gaussian pulse spectrum, and scattering medium
respectively, we find that with finite-size scatterers.
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B. Stochastic problem and the filter P(.) functions. Furthermore, we could not
evaluate the integral in Eq39) for the Gaussian form, Eq.
(37). A series solution for Eq(39) was obtained with the
2DG form of Eq.(38). However, the resulting expression

found in the same manner. Instead, we use the approxim&! rovides no intuition regarding the basic physics of the prob-

tion, Eq. (19), for the coordinate transformation, E€LS). em. Since closed form solutions of E@3) were not found
From Eqgs.(10) and(20), we find that Eq(24) yields for the assumed autocorrelation models, we decided to evalu-

ate the lower bounds df,,, since any improvement in the
lower bound implies an increase in the magnitude of the
cross correlation.

By analyzing the large’ dependence of Eq§36)—(38),

For the deterministic problem in the previous subsec-
tion, we were able to compufe(z) exactly, as in Eq926)—
(28). For the stochastic problem, howevés(z) cannot be

N —
P22 o | [ ks de HE (k) Ho@ERIPO) P

X explj (kiz;—akyz,)) f dz' one can show that the variances are bounded according to
2051
X exp(j(k—kp)Z')(exp(— jkiB(2)), (33 (Bz))=C, (40
wherea=1/(1-5). where
The functiong(.) is defined in Eq(21) as the cumula-
tive strain perturbation. Sincés is defined as a zero-mean ( @%02L,L for the exponential autocorrelation
Gaussian random process, its integral is also a Gaussian pro- function
cess. The characteristic function of the Gaussian random '
variableq is (exp(iq))=exp(—(g?)/2),*! so that C=¢« \/EazcrgLsL for the Gaussian autocorrelation
ki , function,
(exp(—jkif(z )))=ex;< — Bz )>)' (34) a%o2L2  for the 2DG autocorrelation function.

The variance(8%(z')) in the above equation is calculated (41)

using Eq.(21) as Note that the values & for different autocorrelation models

B 1y % are very similar. The smalle§ value is for the 2DG model,
(B(z'))=a fo fo dy du(ds(y)ds(u)), (39 since the correlation length of the strain profile is much
smaller than the length of the sample From the variance

where the expectations(y)s(u)), is defined by EqQs. pound, it is clear that the integral in EG9) has a lower
(14)—(16) for the three autocorrelation models under considound given by

eration.

Substituting Eq.(14) into Eq. (35 and evaluating the k2
integrals for the exponential autocorrelation function, we ob-| dz" exp(j(k,—k;)z’ )exp( — = (BAz)
tain

(B&(z'))=a%diLs e p( - 'i—') %— 1} (36) >exp( - g ki) 8(ko—ky). (42)

Similarly, Egs.(15) and (16) yield

Substituting this expression into E(3) and evaluating the
integrals we obtain the worst case scenario for the cross cor-
relation:

<Bé(2’)>=520§L§[ exp(—2'%/LY)— 1

z 2
- ' N i
+\ L. erf(z /LS)} (37 T1o21.2)= 0 : eXF{—TET"(—?z”
and 16\ 75 Na
—37.)2 — a7
(B3ou(2)=a202L Y1~ exp(— 2 /L2)} (39 Xexp< (e )COS( ﬁfZl,zaZz)),
for the Gaussian and second derivative of the Gaussian 4na Ta
(2DG) autocorrelation functions. These equations are the dis- (43
placement variances for the three autocorrelation models.
Next, we investigate the integral where
d 2 H k —k ' _k_i 2/ 51 39 Lﬁ"‘gzl_{-lz C
7' exp(j(ka—ky)z")ex (B(z")) (39 7];_2: L$+T+ > (44)

in Eq. (33) for the special cases of Eq§i6) (38). Substitut-

ing Eq.(36) into Eg.(39), we find a series solution using an and r—and [+ are obtained from Eq:32) by substitutinga
identity given by Middletor?> Substituting that series solu- in pIace ofa. There is a strong similarity between the results
tion back into Eq.(33), however, we were unable to find of the deterministic and stochastic problems, E§4) and
closed form solutions for the assumed system respbiige  (43).
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T(znz) 7% Kallel etal!® Signal decorrelation is minimum when
— — 72+ {2/ 52=0, which may be achieved using one of three

! ” strategies
ﬂ The first strategy is to increase the bandwidth of the
H pulse so it is large compared with the bandwidth of the tissue

05
spectrum, i.el.,, = L{, < L. Each scatterer is then resolved
o A\ /\ ] . / and can be tracked individually. Unfortunately, very broad-

NS ' V ' \/O ara band transducers with sufficient sensitivity to penetrate deep

into the body are not currently available.
4 The second strategy is to keep the strains snaaH],
and to match the pulse and tissue spedig(k)=F,(k).

u u However, small strains produce weak elastographic signals,
which result in low target visibility. Also, if hard inclusion
FIG. 3. Shows a typical cross-correlation function. The period of the oscil- with different elastic moduli are placed in a soft background,
lation is 77/¢. then large compressions are required to obtain the dynamic
range necessary to differentiate among the hard inclusions.

The third strategy is most promising for many practical
situations that call for moderate pulse bandwidths and mod-
ate tissue strains. As with the second strategy, we choose a
%ulse spectrum that matches the tissue spectra, but in addi-
tion we apply two conditioning steps to the postcompression
echo signal, viz., pulse shaping and signal stretching, so that
H,(kK)=F,(k)=H,(k)=F,(k) even for moderately large
strains.

ad

In the next section, we show holi, for the determin-
istic and stochastic cases depend on parameters of the im
ing system and the medium under investigation. Then, w
isolate the variables critical to maximizing the cross-
correlation function.

I1l. DISCUSSION AND EXAMPLES
A. Deterministic problem 1. Shaping the postcompression pulse, h  ,(Z2)

Consider the results of Sec. Il A, where the strain profile  To illustrate the value of signal conditioning, we define
has three well-defined layers. The cross-correlation functiotwo parameters that quantify the amount of echo-signal
for this deterministic problem is described by E81) and is  decorrelation. The correlation coefficiept measures the
plotted in Fig. 3 for typical broadband echo signals. The firstsimilarity of two signals, and is defined as
exponential factor on the right-hand side of Eg1) scales

I'15(24,2,) independent of position in the medium. The sec- p= I"12 max _ (45)
ond exponential factor gives the envelopelgi(z,,z,) its VI 11 mad 22 max

Gaussian shape. The cosine factor determines the oscillati
frequency and phase &f;5(z;,z,). Our objective is to de-
sign experiments so that the peak valuelgf(z;,z,) is
maximized with respect to the noise and is large compared to I"15 max
adjacent peaks. Any process that reduces the maximum
cross-correlation value is a source of signal decorrelation that _ )
should be minimized. I'11 maxand I'y, o @re peak autocorrelation function values
For low input signal-to-noise conditioni§/N is the ratio  [oF the echo signals, andr,. _
of echo-signal power to noise powgthe second exponential To study the cross-correlation peak for constant-strain

factor and the cosine factor dominate the strain variance bé:_ondltlpns, we isolate the first exponentlr_:ll factor in E3{)
cause of ambiguity err6¥:® To reduce this error and cor- Y Settingz; —az+b=0 and then evaluating PR of E(1)

rectly distinguish among the cross-correlation peaks, wé? find
could design the experiment to minimizg so that the en- \/W k2|_2 kj? §a
velope ofl'1z;,2,) attenuates the adjacent peaks. Alterna- r{
tively, we could minimizeZ,/ 72, which increases the sepa-
ration between cross-correlation peaks. In either case, (k¢L2+koL2)
ambiguity error is minimized for low input S/N when we use - W)
low center frequency and/or broadband pulses. fr=h
q y p

For the high input S/N conditions common in medical SubstitutingaL/, = L, andk, = aky into Eq.(47), we find that
imaging, the first exponential factor in Eq(31), PR=1; that is, the pre- and postcompression signals are per-
exp(— 72+ ¢2/%2), is the major factor determining estimation fectly aligned and there is no signal decorrelation. The cor-
variance. Displacement uncertainty is due primarily to decofelation coefficientp is also unity under the above condi-
rrelation between the pre- and postcompression echo signalsons. With that substitution, we increase the center
Decorrelation may be viewed as a mismatch between th&equencyk) and reduce the lengthy, of the postcompres-
pre- and postcompression echo spectra. Spectral changgen ultrasound pulse by the scale factor 1/(1—s). This
caused by tissue motion have been discussed in detail hyreserves the produtik, = Lpko. Sincep and PR are both

%he peak-ratio PR is another measure of similarity that also
compares signal amplitudes:

(46)

F 11 max

77a

(47)
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terrogating pulse is assumed to have a wavelength and cor-
relation length of 0.3 mm. The solid lines in the figures rep-
resent the perfect alignment case where the pulse and tissue
spectra are exactly matched, i.&;~=k, and L;=L,=0.3
mm. There is no decorrelation at=a, where we scale the
pulse in the same manner as the tissue compression scales
the axial coordinate of reflectivity spectrum. The dotted
. curves are fokk;=k, and L{=0.15 mm,L,=0.3 mm, the
0.92 dashed curves are fég =k, andL;=0.3 mm,L;,=0.15 mm,
0.9 the dot-dashed curves are féz=k, and L;=0.6 mm,
L,=0.3 mm, and the dot-dot-dashed curves are for
o ki=1.05%, andL{=0.3/1.05 mm,L,,=0.3 mm. The broken
1.05 lines represent conditions where the pulse and tissue spectra
are not exactly matched.
Figure 4 shows thgt=0.95 and PR-0.85 when there is
no pulse shapinde=1.0). Both functions rise to unity at
a=1.1, and fall top=0.97 and PR0.92 ata=1.2. Less
decorrelation occurs when the pulse spectrum is broader than
the tissue spectrurfdashed curves
. The situation is different for the other cases considered.
0.8 /‘ Varying the width of the tissue spectrum for a constant pulse
spectrum(dotted curves and dot-dashed cupvbas severe
0.73 effects onp but little effect on PR. The values offor a=1
' ' ' are 0.92 and 0.98, indicating that the effect @ris more
°‘ pronounced fot ;<L,, (dotted curvesand less pronounced
FIG. 4. Shows the dependence of the correlation coeffigig€tdp) and the for L¢>L}, (dot-dashed curvgsVarying the tissue spectra
peak ratio PR(bottorn) on the scaling parameter for the deterministic  lowers PR to 0.85 when=1.
problem when a=1.1 and ky=27/0.3 mm. Solid line: ki=ko, The reflectivity spectra for most tissues are unknown, so
L;=L,=0.3 mm, dotted linek;=ky, L;=0.15 mm,L,=0.3 mm, dashed . . . . .
line: L;=0.3 mm, L,=0.15 mm, dot-dashed ling,=k,, L;=0.6 mm, itiS likely that the spectra for the pulse and the tissue will not
L,=0.3 mm, and dot-dot-dashed lin&;=1.0%,, L;=0.3/1.05 mm, be matched. For example, the dot-dot-dashed lines in Fig. 4
Ln=0.3 mm. represents the results foy/k,=1.05. Because the center fre-
guencies are not matched, the peak in the PR versusve,
one, it may be possible to eliminate signal decorrelation fofEd. (49), is greater than one. In fact, anytinkg#ko, the
moderate strains provided that parameters of the impulse r@eak of the PR versus curve will be greater than one: the
sponse functioi,(z) are compressed at the same rate as thgeak is located atr™>a for ki>ky and ata<a for k¢<kKj.
medium. The advantage of PR overis its ability to detect conditions
In most experimental situations, the strain profile, andwhere k;#k,. We can exploit the additional information
therefore the parameter is unknown and varies with depth, provided by PR using an iterative stratedy; is adjusted
i.e., a(z). It is worthwhile, then, to study how and PR yntil the peak of the PR versuscurve is approximately one.

change when scaling the postcompressionepoint spread fun@y that point, the center frequencies of the pulse and tissue
tion according to a constant scale factr® That is, for spectra are matched.

H,(k) = H(k,kg,L}), letL, = Lp/a, ky = akq anda=1.
With this scaling, we find

1.04

1.02

PR

PEAK RATIO,
o
©

Theestimatedissue spectrum may not well approximate
the expectedissue spectrunt; (k), under any measurement
(L2+L2)YM((al a)?L2+ LD '{ 2. conditions that demand spatial resolution. Short-duration
= exp —

waveform segments yield noisy estimateskqk). Conse-
guently, even whetk;=k,, the PR versug curve may not
1 [ (keLi+kolp)?  (keL+(ala)koLp)? peak at one. As the amount of stationary independent data
2 |_f2+ Lﬁ + (a/a)2L$+ Lﬁ increases, we approach the results of Fig. 4. However, time
averaging is not equivalent to ensemble averaging for esti-
mating the cross-correlation function. At the peak value of
and I'o2,,2,) in Eq. (31), z,—az+b=0, so that
\/m ,{g‘?‘/“ (kaf2+koLﬁ)2) Azzzl—zz=(1.— a)z,+b. _In words, the grossfcorrelation
PR= — exp ——— — (49  lag corresponding to the displacement estimtes a func-
Ml a Li+Lh tion of axial positionz,, so that the postcompression echo
Equations48) and(49) are plotted in Fig. 4 as a function of signalr, is a nonstationary random process. The greater the
«a for a constant strain of 10%a=1/(1-0.1)~1.1). The in-  strain, the more nonstationary the signals become.

Nala Nal

(48)

Nala
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k FIG. 6. Shows the dependence of the correlation coeffigiétdp) and the

peak ratio PRbottom on constanC for the stochastic problem. The iden-

N . . tification (1) is for a=a=1.1 and(ll) is for «=1.0 anda=1.1. ky=27/0.3
FIG. 5. Spectral effects of conditioning the postcompression echo signal arg 1 solid lines:k; =k, L;=L,=0.3 mm, dotted linesk;=k,, L;=0.15

illustrated. (a) Without signal conditioning, the height of the cross- mm, L,=0.3 mm, dashed lines:;=0.3 mm, L,=0.15 mm, dot-dashed
correlation functionl'(z,,z,) at its peak,z,=(z;+b)/a, is given by the lines: k;=ko, L;=0.6 mm, L,=0.3 mm, and dot-dot-dashed lines:
cross-hatched area via Eq29)—(31). The center frequency and bandwidth | _ 1 o5 | ~0.3/1.05 mmL.=0.3 mm
of the postcompression reflectivity spectrifg are shifted by the factor 0 1 T Thes '

a=1/(1—s) because of compressiofb) The compressed tissue may be . . . .
interrogated by pulse spectruih, that has been modified in the same man- wide-sense stationary over the window Iean so that the

; W/2
ner as the tissue spectrue) Stretching the echo signal by the factoa1/ sngaI averag&V[ T\y,or 1(z,— 2)r »(z,)dz, may t?e usgd .tO
provides a good match between the pre- and postcompression spectra. A€stimate the ensemble averdge(z,)r,(z,)). Stationarity is
result, the height of the cross-correlation péﬂk)ss-hatched argss greater more nearly achieved when the postcompress|0n S|gna| is
fpo;rtt}E:) conditioned signals in paft) than for the unconditioned signals in Iinearly stretched according to the mean strain, particularly
when the strain variations along the profile are small, e.g.,

. ] ] for inclusions with low elastic contrast.
2. Stretching the postcompression echo signal, r  ,

We can reduce the dependence of the cross-correlatio%‘ Stochastic problem

function on positionz, by scaling the axial coordinate ac- Consider the results of Sec. Il B, where the strain profile
cording to the relatiom(z3) =r,((1—S)z;) before perform-  for the entire sample length is known statistically. The cross-
ing the cross correlation. Scaling the coordingtés equiva-  correlation function for this stochastic problem, E43), is

lent to stretching the postcompression echo signék,).  very similar to that of the deterministic problem, Eg1). In
Following the development in Sec. Il A, it is straightforward the limit where the variations in strain are zero, the bound
to derivel';5(z; ,23). The only difference is the arguments of valueC in Eq. (41) is zero and the two equations are equal.
the last two factors on the right-hand side of E8fl) change If the statistical properties of the strain variatioAs are
from (z,—az,+b) to (z;— (1—s)azz+b). The correlation known, then Eq(43) may be used to design measurements
lag at the peak of I'is(z1,z5) is Az=z;—z; that minimize the uncertainty in displacement estimates in a
=(1-(1—s)a)zz+b. For a homogeneous strain profile, manner similar to the discussion above for the deterministic
wherea=1/(1—s), r5 is a stationary process. The effects of problem.

pulse shaping and stretching are illustrated in Fig. 5. For  The values ofC corresponding to the Gaussian and ex-
inhomogeneous strain profiles, the positional dependence glnential models for strain correlation, E@1), are very
the correlation lag is not eliminated but weakened, siite conservative in the sense that they probably overestimate the
—s)a|=<]|al. In elastography, we assume the echo signals aramount of decorrelation error caused by actual strain varia-
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tions. The second derivative of the Gausqi2DG) may be a  variability is slower than it is for PR. The decline for PR is

more realistic model for describing the second-order statisalmost at the same rate for all the above configurations stud-

tics of strain variations in tissue. The zero-mean feature ofed. The rate of decorrelation is approximately equal to

the function is consistent with the notion that strain is con- (KeL2+ koL 2)2

served. Unlike the Gaussian and exponential forms, the 2DG 1 “f=f " "0~h”
. .. 2(L2+ L2)2

model does not accumulate errors caused by strain variations fTLlh

throughout the entire sample length It emphasizes local gqyation(41) gives the values of for the three autocorre-

variations, which results in reduced values forand less  |ation models that describe the random strain field. The 2DG

signal decorrelation. _ strain model predicts that strain variability causes much less
We now examinep and PR obtained from Eq$41)—  gignal decorrelation than the Gaussian model. Experimental

(52

(44), studies are needed to determine which if any of these models
(L2+ L)Y (ala)2L2+ L)V ;;( o for &s is most appropriate.
p= - e — Further examination of Eq$43) and(44) shows that the
Tala Mala main effect of strain variations dny, for high input S/N is to
2 22 2., AT 22 reduce its amplitude via the first exponential factor on the
— E[ (kaf;L kol'h) (kaf(zlz)koth) ]) right-hand side. The reduction in peak amplitude is caused
2 Li+Li (a/a)"Li+Ly by echo-signal decorrelation. At low input S/N, the strain
(50) variance improves displacement estimation performance by
increasing the period df,, oscillations via the cosine factor,
and but also hinders performance by increasing the width of the
L +L7 %a (keL2+ koL 2)2 Gaussian roll-off via the second exponential factor. Overall,
PR= G ex 2 752 (51)  random strain variations are expected to increase displace-
ala ala

ment uncertainty by an amount that depends on statistical
We are particularly interested in the dependence afid PR properties of the strain variation. As with the deterministic
on the constant€ whose values are given in EGL1) for all problem, pulse scaling and linear stretching minimize echo-
three autocorrelation models. Figure 6 illustrates how strairsignal decorrelation caused by inhomogeneities in the strain
variance increases signal decorrelation throwyghnd PR.  profile.

Curves labeled | and Il in Fig. 6 are fax=a=1.1 and
a=1.0, respectively; aC=0 the values in Fig. 6 are the
same as those in Fig. 4. Solid curves are calculated fo?'
ki=k, and L;=L,=0.3 mm; the dotted curves are for The reliability of the results for the stochastic problem in
ki=ky andL;=0.15 mm,L,=0.3 mm; the dashed curves are the previous section depends on the accuracy of the approxi-
for ki=koL,=0.15 mm; the dot-dashed curves are formate inverse-coordinate transformation given by Ek§).
ki=ko and L;=0.6 mm, L,=0.3 mm; and the dot-dot- We used the three-layer deterministic example diagrammed
dashed curves are fdk;=1.0%, and L;=0.3/1.05 mm, in Fig. 2 to assess the accuracy of the approximation. Equa-
L,,=0.3 mm. Figure 6 shows that echo-signal correlation igion (20) provides estimates of the reflectivity profiles in the
reduced a<C increases. The decline in at greater strain three regions:

Testing the validity of Eq. (19)

fi((1+a(s;—s))az), 0=<z<Z,
foapd2)=1 fa(1ta(s,—9))az+a’(s,—s,)Zy), Z3<2<Z,, (53
fi((1+a(s3—s))az+a%(s;—sp)Zy+a%(s;—S3)Zy), Zy<z<(l-s)L,

wherea=1/(1—s) and the average strasis defined in Eq. waveform, so we used the wavelet transfaiwiT) to view
(25). We now test the validity of the above approximation by the effects. The WT is well suited to our purpose because it
comparison with the exact solution of Eq26)—(28) under  represents thiocal spatial-frequency content of the signal.
the following conditions. Figure 7 displays the WT calculations carried out using
Consider a sample of length=9 cm containing a hard the commercially available software packagerLAB ®. Fig-
inclusion of size R=3 cm that is centered &=4.5 cm ure 7a) shows the WT of the precompression reflectivity
from the transducer. The strain values in the backgroungrofile f;(z) as well as broadband and narrow-band system
regions ares;=0.17 ands;=0.13 but within the inclusion response pulses(z). The ultrasonic echo signal is obtained
$,=0.03. From Eq(25) we finds=0.11. For simplicity, we by convolving one of the two system response functions with
simulated the precompression reflectivity profildz) as a the reflectivity profile along the horizontal axis. Sintgz)
sine wave with a 30Q:m wavelength. Because of the limited is the same sine wave across all three lay@hsre is no
spatial resolution of the display, we can not show the 30Gonographic contrastthe WT representation of the precom-
pm (33.3 cycles/ch variations on the scale of the 9-cm pression reflectivity profile is a horizontal stripe at 33.3
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Broadband Pulse Narrow-band Pulse

SPATIAL FREQUENCY (cm™)

SPATIAL FREQUENCY (cm™)

SPATIAL FREQUENCY (cm™)

(e)

SPATIAL FREQUENCY (cm™)

FIG. 7. Compares the precompression, postcompression, and stretched re-
flectivity profiles using time-frequency representati¢a: shows precom-
pression reflectivity profile as well as broadband and narrow-band system
response functiongb) and (c) show the postcompression reflectivity pro-
files obtained using exact and approximate coordinate transformations. The
strains in each regions are assignedéas0.17,s,=0.03,5,=0.13.(d) and

(e) are obtained by stretching the signals(@ and (d), respectively.

SPATIAL FREQUENCY (cm™)

0 7 - T 3 i >> 5 ) 7 - ‘
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cycles/cm. Note that Fig.(@) through(e) represents the ob- correlation were found to be significant. Signal stretching
ject function and not the echo signal. Figuré)7and (c) decreases the positional dependence of the cross-correlation
display the WTs of the postcompression reflectivity profilesfunction over the window length, decreasing signal decorre-
for the exact and approximate transformatiofig;z) and lation. It is also important to match the pulse spectrum to the
f2apd2), respectively. Because the strains in the three regionbackscatter tissue spectrum to minimize decorrelation, par-
are different, the frequency contents of the postcompressioticularly at high S/N. Pulse shaping is a method for matching
reflectivity profiles vary. Greater deformations in the softthe pulse and tissue spectra. A few simple conditioning steps
regions(l and Ill) increase the frequency of the spectral peakcan greatly reduce signal decorrelation, which is a major
in those regions, i.ek; > k;. Since the productk;L; and  source of uncertainty in elastographic measurements.

kiL{ are conserved, the bandwidth of a broadband reflectiv-

ity profile would increase in proportion #¢ . The hard cen- ACKNOWLEDGMENTS

tral region, however, is deformed very little. Consequently, )
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obtained from the approximation of E53), is in good (through the University of Texasand by the Clinical Radi-
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of Egs. (26)—(28). This indicates that the approximation is
close to the exact solution for 1-D motion, even if the strainsAPPENDIX

are large. : . i
; : Consider a strain profile for a sample of lendgth
As discussed in Sec. Il A2, we can use the average - P P o
strain to improve the quality of local displacement estimates ~ S(2) =s+ 35(2), (A1)

by linearly stretching the postcompression profiles. Figure, nich is written as the sum of an average component,
7(d) and (e) display the WTs of the exact and approximate

reflectivity profiles,f3(z) andfs,,{z), that were obtained by peil 1 f L
linearly stretchingf,(z) andf,,,{z) according to the aver- L
age strains=0.11. Stretching scales down the peak fre-
guency at all positions along, so that the average peak
frequency ovelL equals the precompression value of 3.33
cycles/cm. Comparing Fig.(@) and(e) with (a), we see that
the peak frequencies in the softer regighand Ill) remain , z

greater than the average while the peak frequency in the Z :fo (1—s(y))dy. (A3)
harder regior(ll) is less than the average. There is no signal

decorrelation at positions alormywhere the local displace- We first differentiate Eq(A1) with respect taz, then invert,
ment equals the average displacenigiz) =0 in Eq.(23)].  and finally approximate the resulting equation by

Using this property it may be_ possible to devglop an iterativey , . 8s(z)| 1 5s(2) o
process to reconstruct the displacement profile from the preayz(l—s) 1(1— 1_4 ~(1+ 1_3 /(1—3)
and postcompression signals.

. s(y)dy, (A2)
and a fluctuating componengs(z). The pre- and postcom-
pression coordinatez, and z’, are related through the ex-
pression

(Ad)
for |5s(z)|<1—s and O<z=<L. Sinces(z)~s(z'/(1-79)),

IV. SUMMARY Eq. (A4) can be rewritten in integral form
The 2-D strain profile for a compressed medium con- _ (71 1+ os(y) q A5
taining an inclusion of arbitrary shape has been analyzed by 0 1-s]°7 (A5)

studying two simpler 1-D problems: a three-layer determin-
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