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Techniques for investigating acoustic backscatter from anisotropic biological tissues are examined. 
This empirical study combines single-scatter theory with the known elastic properties and histology 
of the renal cortex to predict the backscatter coefficient from kidney parenchyma. A transverse 
isotropic correlation model is developed to explain how backscattered energy, which varies with the 
incident sound wave direction, is related to the anisotropic structure of the tissue. From the results 
we conclude that renal morphology scatters sound incoherently, and that complex mixtures of 
scattering structures of different sizes, number densities, and scattering strengths can be 
distinguished by analyzing backscatter in specific frequency channels--a spectroscopic approach. A 
K-space description of backscatter measurements from kidney cortex, including the effects of 
anisotopy, provides further support of our hypothesis regarding sources of acoustic scattering. 

PACS numbers: 43.80.Cs, 43.80.Ev, 43.80.Jz 

INTRODUCTION 

We are investigating nondestructive means of measuring 
important structural properties of biological tissue mi- 
croanatomy using pulse-echo ultrasound. Our goal is to ac- 
curately describe the histology of live tissues. Through signal 
processing we seek to extract morphological information 
from the echo signals by comparing experimental echo- 
signal power spectra with analytically modeled spectra. The 
most straightforward approach to the forward problem of 
modeling the scattering process is to assume that tissues con- 
duct sound as a fluid with spatiaily continuous, random, iso- 
tropic perturbations in elastic properties 'y(r) that scatter the 
sound weakly, elastically, and incoherently. If the random 
variable y(r) is highly correlated with the structure of inter- 
est, then one three-dimensional correlation function may be 
used to characterize the microstructure of the tissue, and the 

expressions that relate measured echo spectra to tissue mor- 
phology are known. t-7 Such basic inverse methods have 
many applications, e.g., to characterize inhomogeneities in 
glass and polymers using scattering from laser light, 6 mo- 
lecular bond lengths in liquids using neutron scattering, 7 
solid-state structures using x-rays, 8 and to understand wave 
propagation in the atmosphere and ocean. 9'•ø 

Suprisingly, much information about the microstructure 
of biological tissues can be obtained with the very simple 
assumption that tissues are inhomogeneous fluids. For ex- 
ample, Mottley and Miller • and more recently Rose et al? 
have developed models to describe how ultrasound is back- 
scattered from structurally anisotropic heart muscle to ex- 
plain why the echo intensity varies during the cardiac cycle. 
By understanding the anisotropic properties of the tissue, 
they were able to use measurements of backscattered inten- 
sity to diagnose abnormalities in the heart based on changes 
in myocardial microstructure. 13 Fcleppa et al. 14 also used 
backscattered ultrasound to differentiate among different eye 
tumors; specifically, they measured quantities related to the 

average size and number density of scattering structures. 
With similar analytical melhods, we found that the acoustic 
energy backscattered from a mixture of different size struc- 
tures in the kidney could be discriminated using the echo 
spectrum, •5 and that it was possible to monitor changes in 
the size and number density of these structures that resulted 
from changes in renal function? In each of the applications 
above, a more direct interpretation of backscattered ultra- 
sound data was possible in terms of the tissue morphology 
once the scattering sites were identified. 

As in muscle, the kidney has a random, anisotropic mi- 
crostructure. An axis of symmetry is defined by the long axis 
of the nephron--the functional unit of the kidney. Nephrons 
are aligned, for the most part, radially from the center of the 
organ. Our analysis is focused on the cortical region of the 
kidney, the 1 cm-thick outer layer, because of its key role in 
renal function and pathology. We know from previous stud- 
ies that the backscattered intensity from the renal cortex is 
greater when the axis of the incident sound beam is perpen- 
dicular to the long axis of the nephron than parallel. •5 For a 
fixed angle between the beam and tissue axes, we found that 
isotropic correlation coefficients accurately represented scat- 
tering sources in kidneys, i.e., scatterer size estimates were 
consistent with histological observations. This paper extends 
that analysis to include an anisotropic correlation model in 
the context of the forward problem. Successful implementa- 
tion of this analysis could lead to a more general solution to 
the inverse problem and consequently a more reliable mea- 
sure of kidney morphology. 

I. METHODS 

A. Scattering sources 

Previous measurements in the 2-15-MHz frequency 
range have led us to conclude that the sources of acoustic 
scattering in the kidney are related to the nephron and asso- 
ciated blood vessels? '16 The elastic properties of basement 
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FIG. 1. An illustration of the general backscatter geometry. 

membranes and smooth muscle vary sufficiently from the 
surrounding structures to assume that these are the specific 
scaReting sites. Specifically, the measured value of Young's 
modulus for renal tubular basement membranes is 

0.7-1.0x109 N/m 2 (Reft 17)---on the order of that for pure 
tendon collagen: 5.1 X 109 N/m2? The evidence suggests 
that the physical properties of basement membranes sur- 
rounding small blood vessels are similar to those for 
tubules. m In fact, most of the structural rigidity of renal pa- 
renchyma can be attributed to the collagenous basement 
membranes that surround the components of nephrons and 
blood vessels? Collagen has a Young's modulus at least 
three orders of magnitude greater than the surrounding tis- 
sues, e.g., the endothelium, 2ø and a density 12% greater than 
that of water. is Among luminal components, basement mem- 
branes provide the largest fluctuation in elastic properties and 
hence the greatest opportunity to scatter sound. The situation 
is probably different at higher frequencies (>100 MHz); 
Kessler et al. 2l deduced that scattering from the collagenous 
intertubular regions is much greater than that from the neph- 
ron structures. However, at diagnostic frequencies, the basic 
functional units of the organ generate the most backscatter. 

On a larger scale, the renal parenchyma is organized as a 
mixture of symmetric and asymmetric nephron-related struc- 
tures that scatter sound. Renal tubules occupy most of the 
parenchymal volume. Convoluted parts of tubules are a 
closely packed tangle; along with the glomerulus these com- 
ponents are viewed in our model as randomly positioned, 
isotropic scattering structures. The ascending and descending 
loops, collecting tubules, and associated blood vessels are, 
for the most part, oriented along specific and known direc- 
tions, and hence are viewed as anisotropic scattering struc- 
tures. We show below that this simple conceptualization of 
renal morphology is sufficient to model acoustic interactions 
and explain why backscatter measurements in the kidney 
vary with the angie of the incident beam. 

B. Incoherent intensity formulation 

Consider a unit-amplitude plane wave of sound 
exp(ik•-r) that travels in the direction specified by the unit 
vector (bold face) • and encounters a volume of renal tissue 
V (Fig. 1). The position of the detector relative to V is r and 
the wave number k=2,r/3` at wavelength 3,. Ignoring ther- 
mal and viscous effects, the incident plane wave is scattered 
by fluctuations in the mass density p(r') and compressibility 
•(r') of the medium? The function •(r')=f[•c(r'),p(r')] 

describes the spatial distribution of these fluctuations, which 
we refer to as the scattering structure. Note that the statistics 
of the echo signal depend on the local scattering structure. In 
pulse-echo measurements in the kidney, the structure in V, 
the volume of tissue occupied by the sound pulse at any 
instant of time, typically encompasses tens of nephrons. This 
is a standard physical model that we and others have used to 
investigate acoustic scattering in biological tissues. It has 
been described previously 23 and is summarized and applied 
below. 

Assume that y(r) of the tissue is random, statistically 
homogeneous, and weakly scattering. Far from V, a detector 
intercepts an amount of scattered power given by the product 
of the incident intensity and a scattering cross section. We 
find the differential scattering cross section •r by determining 
from pressure measurements the ensemble average of the 
differential power {dII) scattered into the unit solid angie 
dl• per incident intensity 

ø'(K) = lidl • 

Equation (1) is the usual single-scatter equation expressing 
the cross section as a function of the three-dimensional Fou- 

rier transform of the scattering structure? The scattering 
vector K= k(fi-[) is the difference between wave numbers 
in the direction of the detector (6 for observer) and incident 
wave propagation [. For backscatter, K= 2kfi. The difference 
vector Ar = r[-r• and dos= dAr (Fig. 1). Finally, the prod- 
uct of { 72), the mean-square fluctuation in medium proper- 
ties, and b•(Ar), the correlation coefficient for the medium, 
is the (auto)correlation function for the scattering medium. 
We are concemed with incoherent scattering only (since the 
coherent scattering component in tissue is small), so the cor- 
relation function entirely characterizes the scattering struc- 
ture of the random medinm. 23 In fact, the term "scatterer" is 
defined for media with continuous fluctuations in elastic 

properties by the correlation function. Tissues are considered 
as collections of scatterers of different size, shape, { y2), etc., 
that are spatially mixed, or in other words sums of •r) func- 
tions, where each contributes to the net backscattered power 
in proportion to its volume fraction. 

Analytically, the model involves plane waves interacting 
with an isolated volume V. Experimentally, however, an ex- 
tended medium is probed and the volume responsible for 
scattering at any instant of time is determined by the resolu- 
tion cell volume of the interrogating beam. In either case, we 
can eliminate the dependence of o- on volume by dividing by 
V, and define the backscatter coefficient o-t, as 

ab(k, qo) = V 
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FIG. 2. Scattering geometry of the transverse isotropic correlation model. 
Spatial frequency (left) and spatial position (right) coordinates are illus- 
trated. The unit vectors defining incident wave propagation i, direction of 
the detector 6, and nephron orientation i are specified. For backscatter, 
6 TM -2, and the angle between the interrogating beam and tissue structure is 
•=•os-•(6.i). 

where qo is the scanning angle discussed below. Equation (2) 
relates the backscattered power--a quantity we measure--to 
the correlation coefficient that characterizes the underlying 
microstructurema function we model from histological 
observation. ]5 In the forward problem, we input b 7 into Eq. 
(2) to predict rr b; in the inverse problem, we measure •rb and 
use Eq. (2) to estimate b•,. 

Backscatter coefficients are estimated from a few short- 

time echo waveform segments, 3 so the measurement uncer- 
tainty at specific frequencies can be large. To reduce uncer- 
tainty, we occasionally sum o'b values over a band of 
frequencies. The result is the integrated backscatter coeffi- 
cient, 

IBC(qo) =r;- 2.; 
•t'tk i=1 

The spherical symmetry possible with isotropic structur• 
allows simplification of the backscatter coefficient equation 
to a single integral: 

k3(•) f ©b•( Ar)sin(2kar)Ardar (isotropic). 

(3) 

Assuming the isotropic Gaussian form b y(A r) 
= exp(-Ar•/2d 2) and using Eq. (3), we were able to identify 
renal scattering structures in terms of their size (as related to 
the correlation length d) if we fixed the scanning angle be- 
tween • and the long axis of the nephron as defined by the 
unit vector i, i.e., qo= cos-i(•-i) (Fig. 2). ]5 To include the 
possibility of structural anisotropy in the model, we return to 
the more general treatment of Eq. (2), where fro is expressed 
explicitly as a function of k and 

C. Correlation coefficients for renal tissues 

Accurate descriptions of backscatter from anisotropic 
media using Eq. (2) must include spatial correlation coeffi- 
cients that describe the three-dimensional structure of inho- 

mogeneities encountered by a sound wave as it travels 

through the tissue. Levinson 24 suggested a transverse isotro- 
pic model to describe sound propagation in skeletal muscle. 
This model also describes renal cortical structure; it leads to 

a 3-D correlation coefficient that exhibits cylindrical symme- 

try and is isotropic in the x-y plane. Ali•gni•ng the axis of 
symmetry in the tissue and the z-axis, i.e., t- K z = 1, as illus- 

trated in Fig. 2, then b•(Ar)=b•(Az)Xb2(Ax, Ay ) and Eq. 
(2) becomes the product of two transforms? 

k4{ y2) •_•b]( Az ) e-i2nazcos•odA z 
X b2(r) Jo(2kr sin qo)rdr 

(transverse isotropic), (4) 

where •= x/Ax 2 + Ay 2 and Jo(') is a Bessel function of the 
first kind, zeroth order. The first integral is a Fourier trans- 
form of the correlation coefficient along the axis of symme- 
try and the second integral is a Hankel transform in the trans- 
verse plane. 

Our previous experience at interpreting backscatter mea- 
surements in kidney tissues and our simplified view of renal 
histology suggest to us that renal tissues are a mixture of 
three types of structures: I, sparsely distributed, isotropic 
glomeruli; II, sparse, anisotropic blood vessels and tubule 
segments aligned along the z-axis; Ill, densely-packed, iso- 
tropic convoluted tubules. The correlation coefficients for 
these three structures are listed in Table l; each are based on 

a Gaussian function. (Note that dz, dr, and dmd• are char- 
acteristic correlation lengths for the scattering continuum in 
the respective coordinates.) Substituting the isotropic models 
into Eq. (3) and the anisotropic models into Eq. (4) results in 
the analytic expressions for fro listed in Table I for each 
scattering component. 

D. Discrete and continuous tissue models 

Although the inhomogeneous continuum model of tissue 
structure has many advantages, it is often of interest to con- 
vert continuous quantities, such as the correlation length, 
into discrete quantities, such as the effective scatterer volume 
V• and diameter D. The scatterer volume has been defined 

previously as Vs-=f•b•(Ar)doa. 23 For the three correla- 
tion coefficients proposed, it is straightforward to derive the 
effective scattering volumes listed in Table I. The effective 
size of such scatterers, D, is found by equating V• with the 
volume of a sphere. 3 Those results are also listed in Table I. 
Finally, we write (y2)• VsT•o, where • is the mean number 
of scatterers per unit volume and •0 is the mean-square fluc- 
tuation in elastic properties per scatterer. 
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TABLE I. Correlation models and the corresponding backscatter coefficients and other features for three types of renal scattering structure: I=glomemli 
(sparse, isotropic), II=blood vessels and tubule segments (sparse, transverse isotropic), and m=convoluted tubules (dense-packed, isotropic). The backscatter 
coefficient in the long-wavelength limit is ao=knV,,(y2)/l 6*r 2, r = •/A•, go is the scanning angle, and the d's are correlation lengths. 

Correlation coefficient, bv(Ar) 
(literature citations) Backscatter coefficient, •r b Scatterer volume, V• Scatterer size, D 

I b•(Ar)=e -a'el2az fro e-2k2a2 (2•Td2) TM D = 2(3 •'•'•)1t3d • 3.11d 
(ReL 9, p. 11; Ref. 22, p. 416; Ref. 30) 

132• 

D •- 2 x['•d• 2.83d• 

IIl D•2 • d•2.10d 

bl( Az)b2( O=e-aZ2t2a•e .d 2d• 
(Ref. 23, p. 112) 

(Ref. 22, p. 439; Ref. 31) 

O-0 •-2k (d z cos•+d•rSm •) 

rro[ • l e \ 3/z 1 [•} k2d2l e-2t•2a2 

(2,n-)3/2dzd • 

3•) M2 41r d3 

E. Backscatter coefficient for renal tissues 

The assumption of incoherent scattering enables us to 
express the backscatter coefficient for renal tissues as the 
sum of backscattered intensities from each structure. ff/Vi, 
Nit, and Nm are the numbers of structures of each type, then 

Ni Nil /VIII 

/-1 rn•l n=l 

and, from Table I, 

5- 

Nil 

+5; 
m=l 

/gill [ [ e \ 3/2 ] 
Equation (6) is a prediction of the backscatter from normal 
renal cortex that is based on the microscopic anatomy. From 

TABLE 11. Properties of renal microanatomy. 

Diameter Number density 

Structure (/am) (mm-3) 
Isotropic 
structures 

Anisotropic 
structures 

glomerulus 200 10 1.00 
proximal convoluted 60 100 0.S0 

tubule 

distal convoluted 
40 100 0.50 

tubule 

15 

descending loop 500 10 0.25 
30 

ascending loop 500 10 0.25 
5O 

afferent arterioles 50 2.0 
100 

30 
efferent artefioles 50 2.0 

100 

120 

collecting tubules 1130{) 0.1 2.0 

data in the anatomy and physiology literature on the average 
size and number of specific renal microstructures, predic- 
tions are made in the next section. Combining data from this 
literature and our previous measurements, t•'16 we now sum- 
marize in Table II the essential physical properties of renal 
cortex. The term "diameter" refers to an average cross- 
sectional diameter of the isotropic structures listed. For an- 
isotropic structures, cross-sectional diameters are the smaller 
of the two values listed; the other is a coarse estimate of the 
lengths seen from light microscopy in the y- z plane and are 
not the total lengths of those structures. Listed values for 
•0 are relative to that for the glomerulus. Each is a guess 
based on qualitative estimates of the amount of collagen in 
each structure. We used our previous estimate of 
•O,glom=0.001. t• Most of the data in Table II are rough 
estimates of highly variable biological quantities, 

II. RESULTS 

Combining the data in Table II with Eq. (6), we pro- 
duced the values for so(k, •0) plotted as lines in Fig. 3. The 
abscissa is in units of temporal frequency f= kc/27r, where c 
is the speed of sound. The scanning angle •o=0 ø indicates 
that the axis of the interrogating beam is parallel to the axis 

0.001: 

•' 0o 

• 0.0001 , 

0.00001 , , , 
I I0 

Frequency (MHz) 

FIG. 3. Measured backscatter coefficient values (points) are compared with 
predicted values (curves) at two scanning angles, so=O ø (dashed line and 
closed points), and go=90 ø (solid line and open points). Shown are data for 
a single sample of excised cortical tissue from a dog measured at 19 øC. 
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FIG. 4. Measured integrated backscatter coefficient values (points) and pre- 
dicted values (lines) are plotted as a function of scanning angle for the high- 
and low-frequency bands indicated. Each data point indicates the average 
IBC value from four excised dog kidney samples measured at 19 øC. The 
error bars denote + 1 standard error. 

of the nephron, and qo=90 ø indicates perpendicular inci- 
dence. Integrated backscatter coefficient (IBC) estimates for 
the frequency ranges indicated are plotted as a function of 
scanning angle in Fig. 4. 

Predictions, as indicated by the curves in Figs. 3 and 4, 
are compared with measurement points reported earlier for 
kidney cortex? All the data are for freshly excised normal 
dog kidneys; the data are from one tissue sample in Fig. 3 
and an average of four tissue samples in Fig. 4. The curve 
representing perpendicular incidence in Fig. 3 was scaled to 
visually fit the data points. That one scale factor was then 
applied to all the curves in Figs. 3 and 4. The need for a scale 
factor reflects our lack of complete information regarding the 
elastic properties of microscopic renal anatomy. Neverthe- 
less, the predictions do reflect the functional dependence of 
the measurements, particularly in the higher frequency range. 
The 5-MHz boundary between the two frequency ranges in 
Fig. 4 is based on our previous observations in the kidney: 
o't, properties are determined by --200 /.tm-diam scatterers 
below this threshold and --50/zm-diam scatterers above this 
threshold. 

The predicted values of (ro(k,qo) from Eq. (6) are also 
plotted in the polar K-space illustration of Fig. 5. The dark- 
est areas indicate spatial frequencies for which the backscat- 
ter is most intense. The scanning angle q0=0 ø is the z axis, so 
that qo=90 ø is the x,y-plane and perpendicular to the nephron 
axis. The dashed line in Fig. 3 is the same information pro- 
vided by the z axis in Fig. 5, as is the solid line in Fig. 3 and 
a radius in the x,y-plane in Fig. 5. Similarly, by averaging 
backscatter coefficients in Fig. 5 over frequency bands, we 
arrive at the curves in Fig. 4. The K-space description of 
backscatter is a convenient graphical method for examining 
results of the forward problem discussed in this paper as well 
as interpreting results of the inverse problem. 25-27 

III. DISCUSSION 

The overall agreement between the analytic model and 
the data in Figs. 3 and 4 indicates that Eq. (6) is a useful 
conceptual model for interpreting renal backscatter. Previ- 

Kz 

ß ....:.x...•.................... :.:.:.:.:.:.:.x•x.:.-•.:.:-- • • • 

FIG. 5. The K-space diagram describes the distribution of backscatter co- 
efficients fin renal cortcx as a fuactkm of spatial frequency, k=lKI, and 
scanning angle, •p, that results from application of Eq. (6). The darkest areas 
indicate frequencies where backscatter is mosl intense. The axis of symme- 
try in tissue is aligned along the z axis, and the horizontal axis is any line 
through the origin in the transverse (x,y) plane of the tissuc. For the ana- 
tomical structures listed in Table 11, backscatter information is available up 
to temporal frequencies fma•=Ckma•/2,r•30 MHz. Adding smaller struc- 
tures to the model, e.g., those at the cellular level, would increase f•,,,. 

ously we found that o' b and IBC estimates varied signifi- 
cantly with qo, while scatterer size estimates (based on the 
frequency dependence of o-t, ) did not. 15 Equation (6) pro- 
vides one possible explanation. From Fig. 5 we see that renal 
backscatter is mostly isotropic except when the beam is 
nearly perpendicular to the nephon, at qo•90 ø or 270 ø. The 
anisotropic components of the scattering structure produce a 
significant amount of backscatter only at near-perpendicular 
incidence. At other angles the backscatter cross section is so 
low that these structures effectively disappear. Consequently, 
changes in o-t, as a function of qo reflect changes in the num- 
ber of contributing scatterers rather than the size of the struc- 
tures. At frequencies less than 5 MHz, larger structures like 
the spherically shaped glomeruli produce the most backscat- 
ter, and therefore o-t, is only weakly dependent on q0. At 
frequencies above 5 MHz, the smaller, anisotropic structures 
produce the most backscatter, generating more total back- 
scatter at perdendicular incidence than at other angles. 

Equation (6) can be extended to include greater diversity 
in scatterer size than that outlined in Table II. For example, 
our histological studies of the kidney Is show that the glom- 
erular diameter is approximately normally distributed about a 
mean value. This added diversity may be included in the 
model simply by convolving each of the rrt, terms on the 
right-hand side of Eq. (5) with a function . / (d) that de- 
scribes the number of scatterers in the distribution about the 

mean correlation length d. That is, 

t 1 
o-t,,(•,d)/=7• ½ o-•,(La')/ • '(a-a'). 

For •/, '=hJ(d-d'), we return to the result of Eq. (6). How- 
ever, using •/'- Gaussian(d,s2), we found that the increased 
size diversity, i.e., larger values of s 2, tended to fiatten the 
curves for o't,(k ) in Fig. 3 for all qo, in conflict with measure- 
ments. Adding size diversity did not improve the agreement 
between predicted and measured values and therefore was 
not used in Figs. 3-5. 

It is interesting to contrast observations of acoustic 
backscatter in the kidney with that in the heart. As in the 
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kidney, myocardial backscatter is maximum when sound 
waves travel perdendicular to the aligned structure (muscle 
fibers) and minimum along the structure. 11 Therefore, a large 
part of the variation in backscatter with cardiac cycle can be 
attributed to a changing alignment between muscle fibers and 
the sound beam as the heart contracts and relaxes. However, 

Wear et al. 2s have shown that there is also a small but sig- 
nificant change in the frequency dependence of backscatter 
during the cardiac cycle that may be attributed to changes in 
the effective scatterer size. They found that isotonic contrac- 
tions distort the shape of the myocytes so that their cross- 
sectional diameters vary during the cardiac cycle. 32 Back- 
scattered ultrasound can also be used in the live kidney to 
detect changes in the size of renal structures altered by physi- 
ological manipulation 16 or disease? 

In our model, collagenous basement membranes act as 
scattering sources. Similarly, in the myocardial model of 
backscatter proposed by Rose et al., 12 the scattering sources 
are assumed to be the extracellular collagen surrounding the 
myocytes. One obvious difference between the heart and kid- 
ney backscatter models is that Rose represents myocardial 
scatterers as an ensemble of discrete prolate spheroids, while 
we represent renal scatterers by a Gaussian correlation func- 
tion. There is little difference among the predictions for dis- 
crete and continuous models when the scatterer size is on the 

order of the wavelength or less, i.e., D/k•<I. At shorter 
wavelengths, discrete scatterers display sharp spectral 
minima (resonances) and the Gaussian correlation coefficient 
vanishes; neither of these effects have been seen in tissue 
measurements. In the size-frequency range where D/k•<I, 
discrete and continuous formulations provide equivalent pre- 
dictive accuracy-•one may offer more mathematical conve- 
nience or greater physical intuition, but both are representa- 
tive of measurements in tissue. Further development of 
backscatter models depends much more on improving our 
understanding of the physical properties of tissue microstruc- 
ture. 

Note that a dense-packed correlation model was used to 
describe scattering from convoluted tubules. This was neces- 
sary to match the model to the data in Fig. 3 at frequencies 
above 5 MHz. The backscatter coefficient from dense-packed 
scatterers has a greater frequency dependence (f6) than that 
predicted for Rayleigh scattering (f4). Convoluted tubules 
appear histologically as a dense tangle of tubules that occupy 
most of the cortical volume, suggesting that the dense- 
packed, isotropic Gaussian correlation model is reasonable. 
It is also possible that structures smaller than those consid- 
ered in Table II, which contribute significantly to backscatter 
at frequencies above 10 MHz, might be needed to complete 
the model. We have omitted smaller structures in the analy- 
sis, on the order of the cell size, because there is little or no 
detailed data on their elastic properties. 

Equation (6) is intended to be descriptive of renal back- 
scatter in the diagnostic range of frequencies: 2-15 MHz. In 
that range, it is possible to study changes in glomerular struc- 
ture for live organs by analyzing backscatter between 2 and 5 
MHz. Information about properties of arterioles and tubules 
may be obtained from backscatter coefficients at frequencies 
between 5 and 15 MHz. 16 

IV. CONCLUSIONS 

This study extends our previous ultrasonic analysis of 
renal microanatomy to three dimensions by including a di- 
rectionally dependent correlation function to represent scat- 
tering sites in tissue. The intensity backscattered from nor- 
mal renal parenchyma between 2 and 15 MHz is consistent 
with an incoherent summation of sound waves scattered 

from tissue structures on the scale of the nephron and asso- 
ciated blood vessels. Most variation in the backscatter coef- 

ficient with scanning angle appears to be caused by changes 
in the number of structures per volume of tissue that scatter 
sound. 
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