
714 IEEE TRANSACTIONS ON ULTRASONICS,  FERROELECTRICS,  AND  FREQUENCY  CONTROL, VOL. 41, NO. 5, SEPTEMBER 1994 

Backscatter Coefficient Estimation 
Using Array Transducers 

Michael F. Insana, Member, IEEE, Timothy J. Hall, Member, IEEE, and  Larry T. Cook, Member, IEEE 

Abstract-This  paper describes an extension of our broad- 
band method for estimating backscatter coefficients  from  random 
media to include  data  from  array transducers. Four  different 
transducer designs have  now  been considered: one- and two- 
dimensional  linear arrays, annular arrays, and single-element 
focused  pistons  commonly  used in mechanical  sector  scanners. 
The analysis shows  that  if  the  backscatter echo spectrum  is 
properly normalized, the  shape of the  piezoelectric elements 
affects only  the  magnitude  and  not  the  frequency  dependence 
of  the  backscatter coefficient estimates. Experimental  data  were 
acquired using laboratory  and  clinical imaging instrumentation 
to verify  the analysis. We compared  backscatter coefficients 
measured as a function of  frequency  from  well-defined scattering 
media  that  were  obtained using a l - D  linear  array and focused 
piston transducers. Instrument-independent results  were found 
that  matched  theoretical  predictions within the  measurement 
error  between 2 and 12 MHz. We conclude from this study  that 
accurate  backscatter  coefficient estimates may be easily  obtained 
using current  clinical  imaging  instrumentation. 

I. INTRODUCTION 

T WO PRINCIPAL goals of quantitative analysis in diag- 
nostic ultrasound are to understand the  nature of sound- 

tissue interactions and to identify and  develop new diagnos- 
tic tools not available with current gray-scale imaging and 
Doppler techniques. Towards these goals, various approaches 
to  echo signal processing have been proposed to accurately 
measure acoustic scattering properties of soft tissues [6], [ 1 l], 
[17], [21]-[23], [27], [29],  [30]. Although based on the same 
physical principles, the various methods  have produced large 
variations in reported backscatter coefficient estimates for 
ostensibly the same tissues, e.g., [26]. In all probability, the 
tissues were not the same, and  the variability in backscatter 
was  due in large part to a variability in the physical state of 
the tissues examined.  Considering that backscatter coefficient 
estimates vary with the size, number,  shape,  and  elastic 
properties of the tissue microanatomy,  and that these properties 
can change with the amount of tissue perfusion [ 131 for in vivo 
measurements and the tissue temperature and post-excision 
time [ 2 ]  for in vitro measurements,  the most meaningful 
backscatter measurements are those made in live tissues, in 
situ. 

The ideal instruments for this task are clinical imaging 
systems.  System  features that define high-quality diagnostic 
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Fig. 1. Transducer  geometry for describing field patterns from a l-D linear 
array. 

imaging  also  enhance quantitative analysis. The purpose of 
this paper is to  update,  clarify, and expand  our previous anal- 
ysis [ 1 l] to include data reduction techniques for measuring 
backscatter coefficients with array transducers. We focus on the 
use of l-D linear  arrays,  annular  arrays, and mechanical probe 
designs  to  emphasize the possibilities of clinical  applications 
using current  technology, although we include a discussion of 
2-D  linear  arrays  to  show  how the imaging technology of the 
future is also  important  for  quantitative analysis. 

The paper begins with a brief review of the principles of 
acoustic radiation and Fourier optics in order to present a 
common  framework  for  modeling incident acoustic pressure 
field patterns for the four transducer designs.  Each field pattern 
is then introduced into the echo  spectrum  equation to express 
the backscatter coefficient equation  for  each transducer design. 
The results are summarized in two tables and verified experi- 
mentally for l-D linear arrays  and  focused piston transducers. 

11. METHODS 

A. Field  Patterns 

Applying the Huygens-Fresnel principle ([ 101, section 4. l ) ,  
we consider the radiating surface of the transducer as a 
collection of point sources that oscillate sinusoidally. The net 
pressure field pu(r, t )  at the vector position (bold typeface) r: 
time t. and temporal frequency ul = 2 ~ f ,  may be determined 
by summing the pressure fields from  the oscillating sources 
at position r’ (Fig. l ) .  If the sources lie entirely within the 
X’, y’ plane, the radiating surface is defined by the aperture 
distribution function a ( d ,  y’). 

The standard Fresnel approximations  are applied to restrict 
the geometry of the experiment and thereby greatly simplify 
the following analysis ([lo], section 4.1). First, the distance 
between the radiator and observation planes z is much greater 
than the maximum linear dimension of the radiating area, 
i.e., z >> Max{d, y’}. Second, only a small region about 
the beam  axis  is of concern in the analysis, i.e., the paraxial 
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approximation, where z >> Max{z, y}. As a result, the 
pressure field is  expressed as 

Pw(r. t )  = 

(1) 

where P, is the pressure amplitude, X is the complex wave- 
length, k = w / c  + icr(w) is the wavenumber, c is the 
longitudinal speed of sound, and N is the attenuation coeffi- 
cient. Also, 3 { f ( z ’ ,  y ’ ) }  indicates  the 2-D Fourier transform 
of  the function f ( d , y ’ ) :  

F{.f(X’> !l’)) = /[I f(z’, y’) exp [-i27r(u,zl+ uyy’)ldz’dy’ 

for the spatial frequencies U ,  = x/Xz and U ,  = y/Xz. With 
these assumptions, the accuracy of ( 1 )  is within 3% at a 
distance 42 mm  from a transducer with a 19 mm aperture 
(see  Section 11-1). 

Under the Fresnel approximations, the pressure is propor- 
tional to the product of the Fourier transform of the aperture 
function and a quadratic phase factor.  This phase factor 
must be eliminated to achieve  (Fraunhofer) diffraction-limited 
spatial resolution-and closed-form  solutions to equations in 
the subsequent backscatter analysis-at the  range of depths 
important for  diagnostic evaluation of tissues. 

B .  l - D  Linear  Arrays 

In the near field  of the beam,  the  quadratic  phase  factor  may 
be eliminated by focusing. For example, a cylindrical acoustic 
lens placed on the radiating surface ( z  = 0 )  of a l -D array will 
focus the beam in elevation  (along  the y axis in  Fig. l ) ,  and 
an electronic ‘lens’  may be used to  focus in azimuth (along 
the x axis). 

Weakly focusing in elevation, e.g., using a plano-convex 
acoustic lens, introduces the phase factor e x p [ i k ( A ,  - 
Y ’ ~ / ~ R ) ] ,  where R is  the focal length of the lens, Ay = 
R, - R2 - h2/4 is its  thickness, R, is the  radius of 
curvature of the lens, and h is the height of the radiating 
element ([IO], section 5.1). 

The beam is weakly focused in azimuth electronically 
by delaying the transmission and reception of the signals. 
Electronic focusing introduces the phase factor exp[ilc(h,  - 
, 4 !d2]  = exp(iwr,), where the  time  delay, r,, across the 
- N / 2  5 n 5 N / 2  array elements  is of the  form [l81 

G--- 

r, = T - $(nd)2/c . ( 2 )  

T = &/c is a constant  time delay applied to  each  element, 
n d  = 5’ is the position of the  nth element in the plane of  the 
radiator (Fig. l ) ,  and 8 4 1  is a focusing factor. The transducer is 
focused in azimuth for a depth z by adjusting the constants l’ 
and $. If $1 is adjusted during signal transmission and reception 
such that $1 = 1/2R,  then 

and we obtain Fraunhofer diffraction-limited resolution  at 
z = R. The aperture distribution function (I, and its Fourier 
transform F{.} for a l-D array whose elements radiate with 
equal  amplitude  are given in  Table I. 

Like single-element transducers, the elevational focal length 
of l -D linear arrays is  fixed. Therefore, i t  is necessary to 
limit the range of echo signals used  to estimate backscatter 
coefficients to a region about the elevational focal length if 
we are  to obtain simple, closed-form solutions. Alternatively, 
2-D linear arrays, and to a lesser degree  annular  arrays, provide 
adjustable electronic focusing  for a broad range of depths 
in the medium. 

C .  2-D Linear Arrays 

Improved spatial resolution and adjustable focal lengths are 
possible with 2-D array transducers. Assume an X x N array of 
square (111 x 741) radiating elements are separated by  the center- 
to-center distance d in both azimuth, D:’ = r s d ,  and elevation, 
y’ = m d ,  where 11 and 711 are integers. The radiating surface 
area is A = = ( D , w / ~ ) ~ .  and the array dimensions 
are D x D. 

The time  delay at each element ( 7 1 ;  r n )  required to focus the 
beam at range z is given by [ 181 

r,, = T - [ $ ( 7 r , d ) ’  + [(nrd)’] /c .  (4) 

The first term, T ,  is a constant  delay applied to  all elements. 
The second and third terms are variable time delays  across 
elements in azimuth and elevation, respectively. 

The principal advantage of a 2-D array is the flexibility to 
focus in three dimensions at (virtually) any range. Variable 
delays  are applied to eliminate the quadratic phase factor in 
( 1 )  at specific depths in the medium by adjusting the delay 
factors d~ and I ,  so that v:l = 1/22 = c, and we obtain the 
Fraunhofer diffraction-limited resolution of (3). The aperture 
function for the 2-D linear array and its Fourier transform 
are listed in Table I .  Of course. there are obvious and severe 
difficulties implementing 2-D arrays that are related to the 
extraordinary number of transmit and receive channels needed 
for a practical system [28]. 

D .  Annular- Arrays 

Annular array transducers combine the superior 3-D spatial 
resolution of single-element focused piston radiators with 
the variable focal length of l-D  linear arrays. An aperture 
containing N annuli,  each of width U )  and center-to-center 
distance d, will have a total diameter D = 27u[l+(N-l)d/w], 
a nominal area A’ = 7rD2/4, and a total radiating-surface area 
A = 7rw21L’[1 + ( N  - l)d/w]. 

To focus the beam, signal transmission and reception is 
delayed according to (2), but for an annular array nd = v’ = 

If we again adjust $1 so that ,$ = 1/22 for  each 
depth that we obtain data, the pressure field  is also given by 
(3), where A, is  used  in place of &+A,.  The focal properties 
should be statically adjustable for backscatter measurements, 
i.e.. the dynamic focusing used for imaging is  not required. 

Near the focal length, (3) describes the incident pressure 
field for each of  the transducers. I t  is  the aperture distribution 
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TABLE I 

GAUSSIAN-AFODIZED FOCUSED PISTON APERTURES ARE INCLUDED. UNIFORMLY WEIGHTED APERTURES ARE ASSUMED EXCEPT WHERE INDICATED. 
APERTURE DISTRIBUTION FUNCTIONS AND THEIR FOURIER TRANSFORMS ARE LISTED FOR FOUR TRANSDUCER DESIGNS. RESULTS FOR UNIFORMLY WEIGHTED  AND 

Transducer Aperture Area Aperture  Distribution  Function, u(x’, y’) 
I 

1D Linear 

Array 
1 i { [rect (6) :comb ($)l @ [rect (g)]} rect (g) 1 A = Dwh/d 

2D Linear { [rect (g) ;comb ($)I @ [rect (g)]} A = (Dw/d)* 
Array x ( [rect (g) :comb (f)] @ [rect (S)]} 

Single  Element 

(apodized) Focused  Piston 

$ exp( -27rrf2/A) A = 7rD2/4 

Annular 

N = Number of elements +C,”==, & (circ (&) - circ (&)} Array 

A, = nw2 [l + 2(n - l):] h c i r c  ( G )  
L 

Array 

2D Linear 

Array 

Single  Element 

Array 

{U(X’l Y’)) Definitions 
I I 

[CE-, sinc (wu,) sinc (Du, - y ) ]  sinc (buy) 

[C:=-, sinc (wu,) sinc (DU,  - ?)I 
x [C:=-, sinc (wuy)  sinc ( D U ~  - ?)I 0 otherwise 

uy = y/Xz 

U ,  = z / X t  

circ (R) = { 1 T 5 R/2 

2J1 ( ~ D u , )   ~ T D u ,  ~ X P  [ ( ~ D u r ) ~ / g ]  UT = r / x z  

(apodized) r2 = x 2  + y2 

function a(z’> y’) that  distinguishes the backscatter  analyses 
for the various  transducers  described  above.  These  functions 
and their corresponding  Fourier  transforms  are  summarized 
in Table I for  four  transducer  designs. We have  included 
results for  a  uniformly  weighted  single-element  focused piston 
transducer as discussed in our  previous  work [l  l] and  for  a 
Gaussian-apodized  single-element  focused  piston as discussed 
by others [ 6 ] ,  [30], [29]. Note  that if the  elements in an 
annular  array  are  contiguous,  the  aperture  distribution  function 
for  annular  arrays and its  Fourier  transform  are  identical  with 
those  for  single-element  focused  pistons of equal  f-number. 

E. Echo Signal Spectrum 

We have  shown  previously  that  the  Fourier  transform of the 
echo signal  from  a  random  medium that scatters  sound, S,  (k), 
near the focal  length of  the transducer, R, may  be  expressed as 
a  function of  the wave  number k, by the  following  expression 
([111, (31)): 

S?n(k) = 
A2k3C(k)  exp(i2kR) 

x g(zo)-r.(ro) e x p ( i 2 h )  d~odyodzo ( 5 )  

i ( 2 ~ R ) ~  ///l H2(zo ,  Yo) 

The factor C ( k )  = - $pcT,U, is the frequency  response of 
the  instrumentation, which includes  the  acoustoelectric  transfer 
function T,, while g(z0)  and y(r0) are  the  range  gate  and 
scattering  source  functions  for  the  medium,  respectively. The 
function y(r0) describes the  fluctuation in the density  and 
compressibility of the propagating  medium  that  scatter the 
sound,  which  are the properties we seek  to  characterize by 
this analysis. We  define H ( z 0 , y o )  E F{a(z’,y’)} as the 
transducer  beam  directivity  function  at the focal  length z = R 
(Table I). Although  the  integration is over  an infinite volume, 
the actual  volume  that  produces  backscatter  at  any  instant of 
time - the  scattering  volume V - is  determined by  the 
pulse  length,  range  gate, and directivity  function. We have 
also  set r + A, + Ay = R. Finally,  because of  the paraxial 
approximation,  we find it  convenient to shift the coordinate 
system  to the center of  the scattering  volume,  where  we define 
7-0 = dzz  + y2 + ( z  - R)2  with  the aid of Fig. 2.  

F .  Reference Signal Spectrum 

A reference  signal  is  included in the  analysis  to  remove 
the frequency-dependent  instrument  effects  from  those of the 
scattering  medium. We chose  the  echo  from  pulses  traveling 
in water  that  are  normally  incident on a  planar  surface  as  our 
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Fig. 2. Coordinate  system used for derivation of the  echo  spectrum. 

reference. The scattering  function  for a reflecting plane  with 
amplitude reflection coefficient y’ is 

d r o )  = Y’ h,(zo), (6) 

where h,(zo) is  a  step  function  [4].  In  the  water y(r0) = 0, but 
in the material of  the reflector y(r0) = 7’. The discontinuity 
is in the z, y plane at the  center of the  range  gate  located  at 
z = R, the  focal  length of the  transducer.  Substituting  (6)  into 
( 5 )  and  assuming  local  plane  waves at R -a consequence 
of  the paraxial approximation-the reference  signal  spectrum, 
S o ( k ) ,  is given by 

A2k2C(k)  exp(i2kR) 
” ( l c )  = (aTR)2 

Icy‘ O0 

x d m  &o) h,(zo) exp(i2kzo) dzo 

x H2(20!  Yo) dzodyo. 

First,  we  compute  the l-D Fourier  transform in the  range 
direction.  Provided  that  the  range  gate, g(zo), is centered 
at R and  is of length L = R2 - R1 (Fig. 2) sufficient 
to  encompass  the  entire reflected pulse, the value of L is 
immaterial.  Assuming  a  rectangular  gate  with unit magnitude 
and infinite length, we find by  the derivative  theorem  [4]  that 

d z o )  h,(zo) exp(i2kzo)dzo 

S(z0) exp(i2kzo) dzo = -. 7’ 
(7) 

Second,  the  2-D  integral of the  directivity  function is found 
by applying  Parseval’s  theorem ([lo],  p. 10): 

2 

J J-oa 

= (XR)2 /lm l a ( ~ ’ , y ‘ ) / ~  dz’dy’ 
-m 

where  the  spatial  frequency  variables U ,  z/Xz = Q/XR 
and uy y/Xz = yo/XR. (Note  that H is  real, Table I.) The 
reference  spectrum  therefore  reduces  to 

and  is the same  for  each of  the transducer  designs listed in 
Table I. 

G .  Normalized Power Density  Spectrum 

The  average  power  density  within the time  interval TL (cor- 
responding to the  range  gate L = ~ c T L )  is ( lSm(k ,  L ) I2 ) /L  
for  the  test  medium  and (ISo(k,  L ) I2 ) /L  for the reference 
medium [3]. The  angle  brackets (.) indicate the operation of 
taking  the  ensemble  average of  the random  variable within.  In 
practice, we obtain Ne statistically  independent  spectra  from 
a region in an  isotropic,  random  medium and compute 

The normalized  power  density  spectrum W ( k )  is defined as 

where a,(w), and Q O ( W )  are  the  attenuation  coefficients  for 
the test medium  and  reference  medium  (water).  Combining 
( 3 ,  (9), and (lo), we  find that 

where ro and r l  are  two  positions in the  scattering  volume. 
Assuming  that  the  echo  signal  can be described as a weakly 

stationary  random  process  [3], the power  density  spectrum 
becomes  a  function of one position variable, the difference 
vector Ar = ro - r l .  and  (11)  reduces  to 

x BH(AZ, Ay)B,(Az)B,(Ar) 
x exp(i2kAr)dAzdAydAz (12) 

where Ar = + (Ay)2 + ( A z ) ~ ,  and BH(AZ?AY), 
Bg(Az), and B y ( A r )  are autocorrelation  functions  for the di- 
rectivity,  range  gate, and (isotropic  random)  scattering  medium 
functions,  respectively,  [6], [ l l ] ,  [15],  [17]. 
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TABLE 11 
BXKSCAITER COEFFICIENT FUNCTIONS ARE LISTED FOR FOUR TRANSDUCER DESIGNS.  THESE FUNCTIONS RESULT FROM THE  COMBINATION OF (15) WITH VALUES 

FOR THE AUTOCORRELATION OF THE DIRECTIVITY FUNCTION AT ZERO  LAG, BH(O, D), THE AREA OF THE RADIATING TRANSDUCER SURF4CE, -4, AND 
THE NOMINAL AREA OF THE APERTLRE, -4‘. UNIFORMLY  WEIGHTED APERTURES ARE ASSUMED EXCEPT WHERE OTHERWISE  INDICATED. 

Transducer 

1 D  Linear 

Aperture  Area Bff(0,O) a b  

3 d R 1  W A = Dwh/d  
m (h) (SXR)’/A’ 

($XR)Z/A‘ 

Array A‘ = Dh 

2D Linear A = (Dw/d)’  

Array A’ = D’ 

Single  Element 4R1 

(apodized) Focused  Piston 

(AR)’/ZA 
0.919(XR)2/2A 

(0.919)3LA’W(k) 
A = r D 2 / 4  = A’ 

Annular A = lrwZN [l + ( N  - l):] 
(0.94Pg;L’ W k )  A’ = n D 2 / 4  Array 

0.919(AR)’/ZA 
I l l I l 

H .  Backscatter- Coefficient 

Equation (12) shows that the backscatter  power  density 
spectrum  is proportional to the 3-D Fourier transform of a 
product of autocorrelation functions. To simplify, we assume 
that B, becomes negligibly small as Ar is increased before 
either BH or B, changes significantly 1151,  1171,  1291, [30]. 
Then BH and B, are nearly constant and equal to their value 
at AT = 0 .  (It  is primarily the beam width that restricts the size 
of scatterers for which the approximation holds. At 5 MHz and 
f / 2 ,  for  example, the beam width is 600pm.) Consequently, 

where 

defines the backscatter coefficient in terms of properties of the 
random medium [ 141. 

It is straightforward to show that B,(()) is equal to L if 
a rectangular window is applied to the echo waveform and 
3L/X i f  a Hanning window is applied 131. We have used a 
Hanning window throughout this paper, although the choice 
of window function does not significantly affect backscatter 
coefficient estimates. Spectral distortion is most significant 
near  the  bandwidth  limits  for short waveform segments [l]. 

From ( 1  3), we  find  an expression  for the backscatter  coef- 
ficient in terms of experimental parameters: 

where the temporal frequency variable f was substituted for 
the spatial frequency variable k using the relation X: = 27r f / c .  
The shape of the radiator is reflected in the factors A and BH. 

Separate values for BH(O. 0 )  are needed to compute the 
backscatter coefficient for each transducer  design.  Near the 

where A’ = Dh. Equation (1 7) is an  approximation  of ( 1  6) 
for  contiguous array elements, i.e., w/d  = 1, that provides 
the closed-form solution of (18). The assumption is necessary 
since often we  don’t know the exact  element separation 
on transducers used clinically, and reasonable  because the 
difference  between (16) and (18) is small  enough to ignore 
under practical conditions [32]. As shown in Fig. 3, the error 
in BH(O. 0) that is introduced by the use of (18) is less than 
5% for w / d  2 0.7. 

Expressions  for Ob, BH.  and aperture areas  are listed in 
Table I1 for  four transducer designs. 

1. Experimental Methods 

We verified the accuracy of the above backscatter analysis 
by comparing values of (76 predicted by scattering theory with 
measurements obtained from well-defined scattering media. 
Two of the four transducer designs  summarized in Tables I 
and 11-the l-D linear array and the focused piston-were 
studied experimentally. 

Two different test media were examined. Both contained 
a narrow diameter distribution of glass  microspheres (Duke 
Scientific Corp., Palo Alto CA) in  an agar suspension (#A360 
from  Fisher Scientific, Fair Lawn, NJ). The  average sphere 
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1 

0.7 0.8 0.9 1 
w/d 

Fig. 3. Ratio of exact (16) and  approximate (18) expressions for BH(O. 0)  
as a  function of the gap between  array elements as  described by w/d. The 
result shows that even if the gap is  as large as 0.3u, the error in B H ,  and 
therefore D!,, is less  than 5%. 

diameter in sample 1 was 41 pm, the standard  deviation of 
the distribution was 2 pm, and the number  density  was 24.2 
spheres  per  mm3. The values  for  sample  2  are 85 pm, 3  p,m, 
and  12.1  spheres per mm3. Test samples  were  prepared  as 
described by Madsen et al. [20],  and  wrapped in 13.7  pm-thick 
plastic sheets  (Saran  Wrap,  DowBrands Inc., Indianapolis, IN) 
for  measurement in water. We compensated for transmission 
losses  through the thin plastic  layers by dividing  backscatter 
power  spectra by  the frequency-dependent  transmission  co- 
efficient,  assuming the sound  waves  were  normally  incident 
(see (6.13) in [ 161, where  for the plastic p = 1.7 g/cm3  and 
c = 2504 m/s). 

The  speed of sound ( c )  and  attenuation coefficients ( a ( f )  = 
c t ' f ' l )  were measured at 21°C for  sample 1 (c = 1542 m/s, Q' = 
0.2 dB  cm-'  MHz-'.", = 1.3) and  sample  2 ( c  = 1550 m/s, 
U' = 0.2 dB  cm-' M H z - ~ . ~  , 7 = 1.3) using a  narrow-band 
substitution  technique [ 191. 

Laboratory and clinical  imaging  systems were both used to 
record echo waveforms  from the test media.  The clinical imag- 
ing system included  a  Quantum  2000  (Siemens  Ultrasound, 
Inc.. Issaquah, WA) and  a 5L45 linear  array  transducer (with- 
out  wedge).  The  assembled  clinical  system is illustrated in Fig. 
4. This  commercial  imaging  system  has been  modified  by  the 
manufacturer  to  provide  access  to  analog  radio-frequency (RF) 
echo signals  and the frame,  beam,  and  pulse  synchronization 
signals.  These  signals are received by a  digital  gate  device  built 
in our  laboratory [33] that is used to  access echo waveforms 
prior to any nonlinear  signal  processing.  The  digital  gate 
enabled us to record  signals  from  any  user-selected  region 
of interest.  That  region is displayed in the  image as a white 
box  by feeding the appropriate  signals  back  into  a  video port. 
Echo waveforms were low-pass  filtered,  digitized  at  a  rate of 
50 Msamples  per  second, and stored  on hard disk  for  later 
processing. 

This  particular  5L45  linear  array  had  a  4.5  MHz  cen- 
ter frequency,  a  4.5  MHz  bandwidth (-20  dB), and  used a 
Gaussian  apodization  function on transmit. The  data  were 
analyzed  assuming  no  apodization of  the array on transmission 
or reception.  (In this context, apodization refers  to  unequal 
weighting of the contribution  from  elements within  the active 
aperture  during beam formation.) We selected  a  transmit  focus 

AXstation 

I oscilloscope 

absorbing 
rubber 

dlgllal 
,l 

~ 

ultrasound L 
system I- 

analog r i  
=- transient 
e recorder 

Fig. 4. Diagram  of  the  assembled  clinical  measurement  system  as set  up to 
measure  reference  signals  from  a fluid interface. 

in azimuth  to  equal  the  geometric  focus in elevation ( W  4.2 
cm).  The  output power  was  set to  maximum  (system  display 
setting was -7 dB), the time-gain  compensation amplifier  was 
set  to  minimum at all  depths,  and the overall  gain was set to  -17 
dB for  sample 1 and -27 dB  for  sample 2. Gain  settings were 
adjusted  to  fully use  the dynamic  range of  the digitizer.  Sample 
and reference  waveforms  were  recorded  at the same  gain 
settings  for  each  sample. Test samples were scanned in distilled 
and degassed water  at 21OC. The  center of each  sample 
was positioned  at the focal  length. Twenty-five consecutive 
waveform  segments,  each I O  ps  in duration, were recorded 
per frame  cycle. Ten such  data  sets were recorded per sample 
after  translating  the  transducer in a  direction  perpendicular to 
the beam  axis  a  distance of 5 mm between  recordings. 

A laboratory  system described  previously [ l  l ]  was used 
to record echo signals  from  a  uniformly-weighted single- 
element  focused  piston  transducer. This  system  included  a 10 
MHz  circular  transducer  (Panametrics V315, 9.6 MHz  center 
frequency, 13 MHz bandwidth  (-20dB), Waltham MA) with 
a 19 mm  diameter  that  was  spherically  focused at 55.2 mm. 
The  reference  signals  for the laboratory  system were pulses 
reflected from  a  polished  Lucite block  placed  in  water (2 1 "C) 
normal  to the beam  axis  at the focal  length. 

There is an  important  distinction  between  the  laboratory 
and clinical  systems.  In the laboratory,  a  calibrated  attenuator 
reduced  the  output of the  transducer  (but not  the echo  signal) 
to  match the amplitude of  the reference  signals  to  that  from the 
test media.  Signal  matching  enabled us to use  the entire S-bit 
dynamic  range of  the transient  recorder  for all signals  recorded. 
Unfortunately,  this  clinical  instrument  did not provide the same 
access  to the pulser  circuitry  possible in the laboratory, so 
that reflected signals  from the Lucite  block  were  too  strong. 
Changing the receiver  gain  between  recordings of  the sample 
and reference  signals  is not  an option,  since that could  reintro- 
duce  a  frequency-dependent  instrument  effect.  Instead we  used 
pulses reflected from  a water-carbon tetrachloride  interface 
as a  reference  signal  (Fig. 4). The reflection coefficient  of 
the interface  between the immiscible fluids is  much smaller 
than that  at  a water-Lucite interface, and it may  be adjusted 
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by changing the temperature. From  temperature-dependent 
values of density and sound speed [34], we computed y'* 
[(6.7a) in [l611 and plotted the results in Fig. 5. Precise 
temperature control is required near  room  temperature, where 
the reflections are weakest. At the 23.5 f 0.1"C temperature of 
this reference signal measurement,  the uncertainty in :,'*, and 
therefore the bias in 0 6 ,  was as high as 13.8%. Increasing the 
temperature of the fluids to 25.0 f 0.1"C  could  have reduced 
this bias by one half. 

The simplicity of the test media  enabled us to predict 
backscatter coefficients for comparison with measurements. 
The method of Faran [8] was used to predict backscatter 
coefficients from the test media as a function of frequency. 
Because the accuracy of Faran's theory has been verified 
for  simple scattering media [ 5 ] ,  [S], it has been  used as a 
comparison standard for testing the accuracy of backscatter 
measurement techniques [21].  The essential parameters for 
applying  Faran's theory to predict backscatter coefficients are 
mass density (1.00 g/cm3 for the agar  and  2.38 g/cm3 for 
glass  spheres), longitudinal sound speed (5571.9 m/s for  glass)? 
and  Poisson's  ratio (0.21 for  glass) [21]. The mean  sphere 
diameters  and number densities listed above were used in the 
computations. 

111. RESULTS AND DISCUSSION 

Measured and predicted backscatter coefficients are plotted 
as a function of frequency  for  samples 1 and 2 in  Fig. 6. An 
overall  agreement between experiment and theory is demon- 
strated.  The linear array transducer and clinical instrumentation 
permit backscatter measurements  between 3 MHz and 7 MHz. 
The higher center  frequency  and increased bandwidth of the 
focused piston and laboratory instrumentation extended the 
measurements up  to  12 MHz. 

Despite agreement within the uncertainty of the measure- 
ment, the linear array data  displays a tendency to  be somewhat 
greater than  that  of  the focused piston. We investigated the 
possibility that this was a consequence of ignoring the effects 
of apodization in the data reduction. In their  analysis of piston 
radiators, Ueda and Ozawa  [29] showed that  the normalized 
backscatter power density spectrum from a Gaussian-apodized 
piston radiator is 0.36 dB  greater than  that of a uniformly- 
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Fig. 6. Backscatter  coefficients  versus  frequency, ( r b ( f ) ,  are plotted for  two 
test samples  and  two  transducer  geometries.  Measurements are compared with 
theoretical  predictions  (solid lines) between 2 and 12 MHz. Error bars on 
points indicate k one  standard  error.  Error  bars on the curves at 8 MHz are 
an estimation of the uncertainty  in the predictions  based on the variability in 
glass  sphere  diameters. 

weighted aperture - hence the additional factor of 0.919 in 
the expression  for O b  in Table 11. We have not found the 
appropriate analytic expressions  for apodized arrays,  although 
it  is reasonable to  assume that the results are similar to that for 
focused pistons, i.e., the normalized echo spectrum  is slightly 
greater for apodized arrays. The wide variety of apodization 
strategies now  used  in commercial imaging systems  coupled 
with the small effect on the backscatter coefficient estimation 
suggest that apodization can be ignored in quantitative analysis 
with  little consequence. The apparent bias in Fig. 6 is most 
likely caused by the relatively large uncertainty in the  reference 
signal amplitude. 

We also measured backscatter as a function of the range 
gate  duration. In Fi . 7, the integrated backscatter coefficient 
(IBC = [c:: ~ ( f )  / ( f 2  - f ~ )  [ 121) from 3.0 to  7.0  MHz is 
shown to  be independent of gate duration. IBC values were 
used to  summarize  changes in 01, from a single value. One set 
of 25 echo waveforms was used for the focused piston data 
(solid  circles) at  all gate durations. Analogous  measurements 
were obtained for the linear array (open circles). However, ten 
independent sets of echo waveforms were used to  compute a 
second set of IBC values for the linear array (open squares). 
The three curves in Fig. 7 lead us to  conclude that estimates 

1 
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Fig. 7. Plots of the integrated backscatter coefficient (IBC) versus frequency 
indicate that the  measurements are unbiased  for  a broad range of gate 
durations. Error bars indicate f one standard error. 

are  independent of the gate  length  for 1 . 0 ~ ~  5 TL 5 lO.Ops, 
corresponding to submillimeter  axial  resolution. Of course,  the 
variance in q, estimates  is  much  greater than the variance 
in echo  amplitude  estimates, so that, at comparable  spatial 
resolution,  backscatter  coefficient  imaging  is  much  noisier than 
conventional  B-mode  imaging [ 121, [31]. 

Thus far we have not considered phased array  transduc- 
ers  because of such well-known  problems  as  the  reduction 
in effective  aperture  and  growth of grating  lobes that are 
encountered when the beam is electronically  steered.  Such 
complicating  factors can be incorporated  into  the  above  anal- 
ysis by including the excellent  analysis of phased arrays  given 
by Macovski [ 181. However,  beam  steering  is not an essential 
feature of quantitative  analysis. 

To be an effective  diagnostic  tool,  quantitative  backscat- 
ter analysis  must be fast,  flexible, and accurate, With our 
approach, data are acquired near the  focal  region of the 
transducer, and simple  closed-form  expressions  are used to 
quickly yield accurate m, estimates. We depend on the instru- 
mentation to focus the beam at the region of interest, and to 
thus provide the flexibility required  for  clinical  applications. 
Alternatively, the data  reduction  method of Madsen et al. 
[20],  [21]  provides the flexibility to obtain  accurate  backscatter 
coefficient  estimates at any range, but is very computationally 
intensive.  The  addition of a  random  reference  medium  (to 
replace the plane  reflector) has been shown by Zagzebski et 
al. [31] to  significantly  reduce the processing  time of the 
Madsen  technique without compromising  accuracy.  Others 
have also  successfully used random  reference  media  to  nor- 
malize backscatter  power  spectra [2S]. Advances in adaptive 
beamforming  methods  are  now  providing  large  focal  regions 
for  backscatter  coefficient  analysis, which  tend to negate 
differences in the  speed,  accuracy, and flexibility  between 
the two approaches  discussed  above.  As with imaging, the 
accuracy of both backscatter  coefficient  methods  decreases in 
the presence of wave distortions,  since  accurate  models of the 
beam  are  integral parts of the analyses. 

The  future of diagnostic ultrasound technology  for  imag- 
ing and  quantitative  analysis  includes  2-D  arrays  because of 
the flexibility they offer. With 2-D arrays, the focal region 

may be extended to include the entire field, and  correction 
algorithms  may be applied to compensate  for wave front 
distortions [9]. If it becomes  possible  to  implement  fully- 
populated  rectangular  2-D  arrays, then the backscatter analysis 
as  summarized in Table I1 is  straightforward.  However, to 
reduce  electronic  complexity,  investigators  are using sparse 
geometries with randomly  positioned  active  element  locations 
[7],  and  obtaining  promising  results  for  B-mode  imaging. 
The  pressure fields from  random  sparse  arrays  may not have 
closed-form  solutions, and therefore  the  processing  speed  is 
decreased  when it is necessary  to  numerically  compute  fields 
for  each  configuration. To determine  the utility of quantitative 
methods  for  diagnosis, we must  continue to search  for the right 
balance among  processing  speed,  flexibility,  and  measurement 
accuracy. 

IV. CONCLUSION 

Analytic  expressions  for  backscatter  coefficients were devel- 
oped  for  four  transducer  designs,  including  linear  and  annular 
arrays.  The  data  reduction  formulas  account  for the shape of 
the radiating  elements by introducing  frequency-independent 
factors  into the equations,  thus  providing an accurate  and 
instrument-independent  estimation of ob. Since normalized 
echo  spectra  for  different  transducer  designs have the same 
shape,  accurate  estimates of parameters that depend on the 
magnitude of the backscatter  coefficient,  e.g., IBC, require 
careful  consideration of the transducer  geometry.  Conversely, 
parameters  determined  from  the  frequency  dependence of 
backscatter  and not the absolute  magnitude,  e.g.,  scatterer  size 
estimates [12], [17], may be estimated  without  consideration 
of the  transducer  geometry. As with mechanical  sector  probes, 
measurements  using l-D arrays  are limited to a fixed range of 
depths in the medium  near the focal length. The  ability to vary 
the transmit  and  receive  foci,  suggests that annular  arrays  are 
the best choice of transducer  design  for  quantitative  analysis 
using current  technology.  Quantitative  backscatter  analysis 
for  diagnosis  continues to be limited by the  unavailability 
of essential  electronic  signals in most  commercial  systems, 
difficulties in estimating  attenuation  coefficients in live  tissues, 
and wave front  distortions of the pressure fields. 

GLOSSARY 

a(z’, Y I )  aperture  distribution  function 
A active  area of the transducer 
A’ nominal  area of the transducer 
B H , B ~ , B ~  autocorrelation  functions  for  beam  directivity, 

range  gate,  and  scattering  source  functions 
c longitudinal speed of sound 
C frequency  response of the  backscatter 

comb(z) C:=-, 6(z - n) 
d center-to-center  distance  between  array  elements 

(pitch) 
D transducer  dimension 

instrumentation 

f temporal  frequency  variable 
9 range  gate  function 
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h height of array  elements 
h, step  function 
H transducer  beam  directivity  function 
IBC integrated  backscatter  coefficient 
IC wavenumber 

L range  gate  length 
n j  unit vectors 
N number of array  elements 
Ne number of echo signal  waveforms 
P d  acoustic  pressure field 
p, pressure  amplitude 
r vector field position  relative  to  the  transducer 

r’ vector  position on transducer  surface  relative to 
center,r = Jz2 + y2 + 2 2  

the  center, T’ = dd2 + + 
r0,rl vector field positions  relative to the scattering 

volume  center, TO = Jx2 + y2 + ( z  - R)2  
Ar ro - rl  
R focal  length 

radius of curvature in elevation  (y-axis) 

S,,S, Fourier  transforms of the echo  signals  from 
reference, test media 

T constant time delay 
range gate duration 
acoustoelectric  transfer  function 
spatial  frequency  variables 
width of array  elements 
normalized  power  density  spectrum 
attenuation  coefficients in the  reference, test 
media  (cm-’) 
lengths  corresponding to the  maximum  time 
delays  introduced by a lens 
scattering  source  function 
amplitude reflection coefficient 
wavelength 
mass  density of propagating  medium 
backscatter  coefficient 
time delay  applied to the nth array element 
(radial)  temporal  frequency  variable 
time delay factors 
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