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A method for estimating structural properties of random media is described. The size, number 
density, and scattering strength of particles are estimated from an analysis of the radio 
frequency (rf) echo signal power spectrum. Simple correlation functions and the accurate 
scattering theory of Faran [J. J. Faran, J. Acoust. Soc. Am. 23, .405-418 ( 1951 ) ], which 
includes the effects of shear waves, were used separately to model backscatter from spherical 
particles and thereby describe the structures of the medium. These methods were tested using 
both glass sphere-in-agar and polystyrene sphere-in-agar scattering media. With the 
appropriate correlation function, it was possible to measure glass sphere diameters with an 
accuracy of 20%. It was not possible to accurately estimate the size of polystyrene spheres with 
the simple spherical and Gaussian correlation models examined because of a significant shear 
wave contribution. Using the Faran scattering theory for spheres, however, the accuracy for 
estimating diameters was improved to 10% for both glass and polystyrene scattering media. It 
was possible to estimate the product of the average scattering particle number density and the 
average scattering strength per particle, but with lower accuracy than the size estimates. The 
dependence of the measurement accuracy on the inclusion of shear waves, the wavelength of 
sound, and medium attenuation are considered, and the implications for describing the 
structure of biological soft tissues are discussed. 

PACS numbers: 43.35.Bf, 43.80.Ev 

LIST OF SYMBOLS 

Most of the symbols used here are the same as those used 
by Ishimaru, • Campbell and Waag, 4 and Morse and Ingard. 9 
a 

Ao 
A 

br 
B 

C,Co 

c 

Cr 
d 

f A 

g 
G 

H 

particle radius 
particle radius estimate 
transducer radius 

transducer surface area 

function proportional to the Rayleigh integral 
correlation coefficient 

autocorrelation function 

longitudinal sound speed inside the scatterer and 
inside the surrounding medium s,•, S,• 
system frequency response factor So 
autocovariance function S 

characteristic dimension for a Gaussian correla- T 

tion coefficient U 

acoustic force on the transducer v 

computed, estimated intensity form factors V 
gating function w 
Green's function W 

directivity function X 

k 

K 

MASD 

Pi, Ps, P 
r 

R•,R: 

unit vector for incident plane waves 
spherical bessel function of the first kind 
bessel function of the first kind 

wavenumber, to/c 

scattering vector 
minimum average squared deviation 
average particle number density 
unit vector for scattered waves 

incident, scattered, and total acoustic pressure 
position vector 
the on-axis distance between the transducer and 

the proximal, distal surface of the gated region 
sample echo signal and its frequency spectrum 
reference echo frequency spectrum 
normalized echo frequency spectrum 
acoustoelectric transfer function 

speed of the transducer surface motion 
Poisson's ratio 

scattering volume 
fractional volume of scatterers in V 

average normalized echo power spectrum 
a spectral measure 
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(R2 -- R •)/2 A 
attenuation coefficient P, Po 
the fractional variation in compressibility and 
density and the combined value per particle 
the power spectral density function for the medi- 
um fluctuations y 
an integration variable 
a scattering angle d> 
the compressibility of a scatterer and the sur- o 
rounding medium 

wavelength 
the density of a scatterer and the surrounding 
medium 

differential scattering cross sections per unit vol- 
ume as a function of angle, at 180 ø (backscatter 
coefficient), and at 180 ø in the Rayleigh limit, 
respectively 
complex scattering amplitude 
angular frequency 

INTRODUCTION 

The radio frequency (rf) echo spectrum has been used 
extensively in medical ultrasound research to interrogate 
noninvasively the structural properties of biological me- 
dia.• a One approach is to use the frequency dependence of 
the ff backscatter spectrum. If the medium can be modeled 
as a random suspension of many small particles and the 
characteristics of the instrumentation eliminated, the rf 
spectrum can effectively be used to describe the structure of 
that medium. In this case, structure is broadly defined to 
include the composition, geometrical properties and organi- 
zation of the elements that interact with the sound waves. 

For example, it is well known •'9 that the frequency depend- 
ence of the rf spectrum depends on the size, shape, and elas- 
tic properties of the scattering materials, while its magnitude 
depends on the size and number density of scatterers (num- 
ber per volume) and on their scattering strength (fractional 
variation in acoustic impedenee between the scatterers and 
the surrounding medium). Accurate estimation of these 
structural properties for random inhomogeneous media re- 
quires that the correlation function for the medium and the 
elastic properties of its components be known. Although the 
correlation functions and elastic properties for most biologi- 
cal tissues are poorly understood, several research groups 
have demonstrated relationships between spectral data from 
liver using simple correlation function models and liver 
structure using optical microscopy. 3'6-8 

In this paper, a method for estimating the average parti- 
cle size and the product of the number density and the scat- 
tering strength is described. These properties are estimated 
from the frequency dependence of the rf backscatter spec- 
trum, which has been normalized to eliminate the frequency 
characteristics of the instrumentation. Using the established 
framework of single-body scattering theory,"'9 the connec- 
tion between the normalized backscatter spectrum and the 
correlation function for the medium is made in terms of an 
acoustic form factor. The acoustic form factor, defined in 

Sec. I B, is proportional to the Fourier transform of the cor- 
relation function for the medium, and describes in frequency 
space the geometrical properties and organization of the 
scattering targets. 

To exploit the simple relationships between properties 
of the medium and the backscatter spectrum, several as- 
sumptions are required. We assume that the coherence 
among particles is small compared to the incoherent scatter- 
ing component; the dimensions of the scattering particles are 

taken to be less than or on the order of the wavelength of 
sound in the medium; and the attenuation within the gated 
sample volume must be negligible. In addition, the method 
currently limits pulse-echo data acquisition to the focal zone 
of weakly focused transducers. Preliminary results with test 
samples were used to validate the method, observe the im- 
portance of shear waves, and examine the feasibility of mea- 
surements in tissues. 

The scattering models are described in Sec. I, the data 
acquisition and analysis is described in Sec. II, and the ex- 
perimental results are presented and discussed in Secs. III 
and IV. 

I. FORM FACTOR MODELS 

A. A review of the scattering of plane waves from 
random media 

If the random scattering medium is a tenuous distribu- 
tion of particles, then single-scatter theory • is adequate to 
explain many experimental observations. In the single-scat- 
ter approximation, the incident wave is essentially un- 
changed as it propagates through the scattering medium, 
and the particles are assumed to interact with the incident 
pressure field only once, i.e., all double and multiple scatter- 
ings are assumed to be negligible. Single-scatter theory is 
well established in the literature and is used in many applica- 
tions, including estimation of parameters that describe soft 
tissue microstructure. 2-• The following section briefly re- 
views this theory with regard to estimation of scattering par- 
ticle sizes. The methods described here are based on the theo- 

retical work found in two standard references in acoustic 

scattering. 2.0 
Consider a plane wave of amplitude one incident on a 

scattering volume Vwith equilibrium compressibility •o and 
density Po- Scatterins occurs at sites in P' where there exist 
•,ariations in compressibility and density. The term particle 
will be used to indicate a scattering site even though the 
variations may not be discrete but continuously varying. At 
an observation point r, which is far from V (Fig. 1 ), the 
scattered field for each particle behaves as a spherical wave, 
and is given by 

p,(r) = (eikR/R)4P(K), R> (4a2/A), (1) 

where a is a dimension of the particle, for example its radius, 
R = Irl, A is the wavelength of the plane wave in the medi- 
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too, Po 

//•r,• d 3r' 

r_ = RS• 

FIG. 1. Scattering geometry il- 
lustration showing a point r' in- 
side the scattering volume. 

um, and k = 2rr/A is the wavenumber. The factor qb(K) is 
called the complex scattering amplitude 9 and describes the 
spatial frequency dependence of the scattered pressure; qb is 
a function of the scattering vector K = k(i - 6) whose mag- 
nitude is given by IKI: 2k sin 0/2, where 0 is the angle of 
scattering between the unit vectors specifying the directions 
of the incident plane wave • and the observer 6. For back- 
scatter, 6 = -- i and K = 2ki. An integral expression for ß 
at an observation distance far from a single particle has been 
derived by Morse and Ingard, ø using a Green's function ap- 
proach. The scattering amplitude for a unit amplitude, sim- 
ple harmonic source at r', and with the source term k 2y• 
p -- V' [ypVp]. is given by 

(I) (K, = •-• ;v(y. ( r',p ( r', iyp,r',•'V'p(r',) 
Xe - i&a.r d3r ,, (2) 

wherep(r') is the total pressure, the sum of the incident and 
scattered pressures at the observation point r', Visa volume 
containing the scattering particle, and 

y•(r) = [•c(r) - %]/% 

= fractional variation in medium compressibility, 

yp(r) = [p(r) -po]/p(r) 
= fractional variation in medium density. 

The quantities t• and p arc the compressibility and density at 
position r, and % and Po are the average values for the sur- 
rounding medium. The source term (parentheses) arises 
from a scattering source, a region of space within the sur- 
rounding medium that redirects rather than generates 
acoustic energy. The first term describes the interaction 
between the pressure field and fluctuations in compressibili- 
ty; the second terms describes the interaction between the 
pressure field and fluctuations in density. Also, to first order 
there is a monopolc contribution from y• and a dipole con- 
tribution from yp. These contributions arc a consequence of 
.the scattering particle with nonzero yf moving back and 
forth with respect to the surrounding medium, as opposed to 
the simple direct scatter with no relative motion for particles 
with ya = 0 and y• nonzero. If the particle is weakly scatter- 
ing (the Born approximation), then wc substitute the inci- 
dent plane wave for the total pressure in Eq. (2) and obtain 

q•(K) • (r)e '•r d3r ', (3) 

where 

y(r') = yK (r') + yp (r')cos 19. 

Equation (3) states that in the Born approximation and for 
incident plane waves, the compressibility and density contri- 
butions to the scattered pressure are identical, except for 
their relative weights y• and yo cos 0. 

The :scattered field from a randomly positioned ensem- 
ble of particles is the sum of the individual pressure fields 

ikR N 

p• (r) = e• • d)/(K)e 'w•, (4) 
where r/:is the position of thejth particle with respect to the 
origin and Nis the total number of particles in the scattering 
volume }5 The field p• (r) is a random function of position r, 
and can be written as the sum of the average field (p•) and 
the fluctuating field p;, 

p•(r) = {ps(r)) +p;(r), 

where ( ) represents the ensemble average and {p.; (r)) = 0. 
The average field is called the coherent field and the fluctuat- 
ing field is called the incoherent field. • The relationship be- 
tween the average scattering intensity (I) and the average 
pressure field is 

where I 12 represents the squared modulus of the quantity 
and Co is the average longitudinal sound speed in the medi- 
um. 

From Eq. (5), the average differential cross section per 
unit volume rr a may be calculated for the ensemble. The 
quantity a a is defined for large observation distances as the 
power scattered into a unit solid angle divided by the prod- 
uct of the incident intensity and the scattering volume. 
The average scattering intensity is given by (I) = ( 
poCo R 2 and the incident intensity for plane waves of unit 
amplitude iflo = 1/poCo (Ref. 9). Therefore, 

7o - (6) 

Equations (3) and (6) may be combined to express 
in terms of the spatial autocorrelation function B• of the 
scattering medium as follows: 

k 4 

rra--16rr2V(;vY(rl)e-'X'•'d3rlfvy(r2)e'W•-'d3r2), 
__ , :•_ i/;v ;v(y(rl , y(r2 ,) e 

Xd•ri d3r2, (7) 

where y(r) is now a random Mnction describing the distri- 
bution of scatters in g. •uation (7) may be reduced by 
introducing the sum and difference variables u = (r• + r2)/ 
2 and Ar = r• -- r2 (Re[ 4) to yield 

ad = 1• r(Ar)e-'X'a•d3Ar' (8) 
where 

1 Ar 

= ( 
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The overbar represents the volume-average value. The vol- 
ume average is equal to the ensemble average for statistically 
homogeneous (stationary) scattering media, and therefore 
the overbar has subsequently been omitted. To assume that 
the random process {y(r) ) is weakly stationary, • ' (y(r I ) ) 
and {y(r•)y(r• + Ar)) must not vary with position r•. Con- 
sequently, (y(r•)y(r2)) depends only on the difference At. 

For convenience, we define y• = y(r•) and Y2 = y(r2). 
Then, as in Eq. ( 5 ), B r (At) can be expanded into its average 
and fluctuating components: 

= i<r>l + cr(Ar), (9) 
where C r (At) is the autocovariance function. Here C v (At) 
may be further expanded into the product of the variance 
( I Y -- (Y) I • ) and' the correlation coefficient b•, ( Ar ) (Ref. 
11 ), such that 

By(r) = I(r)12 + (It- (r)l')by(ar), (10) 
where by(O) = I and by( be ) = 0. The correlation coeffi- 
cient depends on the structure of the scattering medium. 

Substituting Eq. (10) into Eq. (8) and arranging terms, 
results in a two-term expression for err: the first term is the 
coherent component of the scattering cross section and the 
second is the incoherent component: 

-- sg-r 3 
o-a= y) d r 

(ll) 
Because we assume the medium is random and isotropic, the 
coherent component is negligible and a a is due entirely to 
incoherent scattering. Moreover, for incoherent scattering, 
where each scatterer in V scatters sound independently of 
the others, the variance in y is given by the mean-square 
variation in acoustic impedenee per particle •o, times the 
fractional volume of scatterers in V, to•_ h V,, where h is the 
average number of particles per unit volume and V, is the 
average particle volume. to The differential cross section per 
unit volume in Eq. ( 11 ), therefore, reduces to 

era = 16/r • •o by(Ar)e -'x'ard3Ar (12a) 

= 4rr•k • g['a(K), (12b) 

where F2(K) is the power spectral density function for the 
medium fluctuations y (Ref. 9): 

F2(K) = •-•-• j_ •br(ar)e '•'a' d'ar. 
The power spectral density function gives the spatial 

frequency dependen• of aa. It Mso describes structural 
properties of the s•ttering medium, such as the average p•- 
ticle si•, shape, number density, and scattering strength per 
particle (i.•., • ). The same structural info--alien is con- 
t•n• in B r (•r) and b r (At), but in this case in the spatial 
domain. In the next s•tion, we exa•ne three co,elation 
functions that may be useful for modeling backscatter cross 

sections in random media and possibly soft biological tissue. 
From the resulting cross sections, a method is described that 
enables estimation of the average particle size, number den- 
sity, and scattering strength. 

B. Three correlation models for random media 

The differential backscatter cross section per unit vol- 
ume •ra, also called the backscatter coefficient,'ø may be 
computed using Eq. (12a). For particles with spherical sym- 
metry by depends only on the radial coordinate, so that the 
angular coordinates may be integrated over to give the one- 
dimensional integral 

cry, -- br(Ar)sin(2kAr)ArdAr. (12c) 
8rr 

Recall that for backscatter K = 2kL 

In the first model, the particles are assumed to be homo- 
geneous fluidlike spheres of radius a. The three-dimensional 
(3D) correlation coefficient for a fluid sphere is (Ref. 23, p. 
419) 

br(ar) = 1 3lar[ IA?{ 0<lAd<l. 4a 16a 3 ' 2a 

By substituting this function into Eq. (12c) and making the 
appropriate computations, the backscatter coefficient for 
the fluid sphere model may be expressed as 

•Vs2•ok4/ 3 
a•,l-- 1-•' 'k-a j'(2ka)) (fluid sphere). 
The funetionj• is a spherical Bessel function of the first kind, 
first order. The product h V, • has the units of volume and is 
proportional to //3. Equation (13) is a well-known result 
from acoustic and electromagnetic scattering theory (Ref. I, 
Eq. 2.41). Equation (13) may be recognized as being pro- 
portional to the 3D Fourier transform of a sphere. This fol- 
lows immediately from Eq. (3) if incoherent scattering is 
assumed. 

In the second model, the compressibility of the spheres 
is assumed to be significantly lower than that of the sur- 
rounding medium, i.e., y• is approximately -- 1.0. These 
spheres are rigid in the sense that the sound field does not 
penetrate or deform the particles. The corresponding scat- 
tering function is a spherical shell impulse, whose 3D corre- 
lation coefficient is given by 

[•5(r-- a)***6(r-- a) = a/6Ar, O<Ar/2a<l, b r (Ar) = 10, otherwise, 
where •5 is the Dirac delta function and the *** denotes 3D 

autocorrelation. (This result was generalized from the 2D 
solution in Ref. 23, p. 403.) Following substitution of this 
correlation function into Eq. (12c), it is straightforward to 
express the backscatter coefficient for the spherical shell 
model as 

{ jo(2ka ) ]2 (spherical shell), (14) •ra• -- 16v a 
wherejo is a spherical Bessel function of the first kind, zero 
order. The spherical shell model arises from questionable 
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physical properties and, as we show in the next section, is in 
poor agreement with the classic solution for scattering from 
rigid, immovable spheres--the case for which it was devel- 
oped. However, it closely agrees with theoretical predictions 
and experimental scattering data from test materials con- 
taining glass microspheres in agar, as shown in the following 
section, and is therefore of interest in this study. 

In the small-scatterer o.r long-wavelength limit, i.e., 
ka-,O, the Bessel functions j•(2ka)-•2ka/3 and 
jo(2ka) -, 1, so that Eqs. (13) and (14) converge to the Ray- 
leigh equation for spheres•'9: 

ao = (•/9)k 4a6•o ß (15) 

From Eqs. ( 13)-(15), we define an acoustic scattering in- 
tensity form factor Fas the ratio of the backscatter coefficient 
for a test material having scatterers with finite size to that of 
a similar material consisting of point scatterers: 

F(2k) = cr•,/•r o. (16) 

As with the spectral density function, the form factor de- 
scribes the geometric nature of the scattering particles, in 
particular size and shape, from the frequency dependence of 
the backscattered inte. nsity. Here, F is the ratio of back- 
scattering intensity from particles with finite size to that 
from point sources. m2 In the range where particles are small 
compared to the wavelength, such that ka • 1, Fis approxi- 
mately constant and equal to 1.0 for all values of k. For 
larger particles, where ka< 1, the form factor is a decreasing 
function of k, where the k dependence of F is determined 
primarily by particle size. For ka > 1, this simplified inter- 
pretation breaks down. The k dependence is then primarily 
determined by particle shape and the elastic properties of the 
materials, including the effects of shear wave propagation. 

The relation between Fand F 2 is found from the ratio of 

Eqs. (12b) and (15), where 

F2(2k) = (a6•/36•r4)F(2k) (17) 

and F(0) = I and F( oo ) = 0. It is obvious from Eq. (17) 
that the magnitude of F2(2k) depends on the size and scat- 
tering strength of the particles. 

From the above examples of scattering from spheres, the 
corresponding form factors may be found: 

Fl(2k) = [(3/2ka)jl(2ka)] 2 (fluid sphere), (18) 

F2(2k) = [jo(2ka)] • (sphericalshell). (19) 

Equations (18) and (19) are plotted in Fig. 2(a). 
In the third model, the scattering sources are assumed to 

be continuously varying fluctuations in the acoustic proper- 
ties of the medium. The correlation coefficient has a Gaus- 
sian form: 

b r (Ar) = e- a•/zd', 

where d is a characteristic dimension. The Gaussian model 

has been used by many investigators to study the structure of 
random test media 5 and biological tissues. 3'6-s The back- 
scatter coefficient for the Gaussian model is easily computed 
by substitution into Eq. (12c) and is equal to 

•rb3 = (•k 4V•o/16•)e 2k-'d• (Gaussian), (20) 
where V• = (2•rd•) 3. In the long-wavelength limit, Eq. 
(20) reduces to 

= vffo/16. (21) 

Setting Eqs. (15) and (21) equal, the relation between dand 
an effective particle diameter 2a•a is 2ace_•3.11d. Thus, 
from Eq. (16), the form factor for the Gaussian model is 
given by 

F_•(2k)=e 2k•'•_e -ø• (Gaussian). (22) 
Equation (22) is also plotted in Fig. 2(a). 

C. Comparisons with scattering theory 

The three correlation models outlined above are simple 
in form but only approximately valid. They cannot realisti- 
cally describe backscattering if ka is much greater than one 
or if the scattering material is nonrigid and supports shear 
wave motion. Under these conditions, higher-order effects 
not included in the models, e.g., resonance phenomena, have 
considerable influence on the scattering energy. As shown 
below, these simple models agree very well with experimen- 
tally proven theoretical predictions when ka < 1.2 and when 
the scattering material does not support shear waves or is 
fairly rigid and dense. 

The scattering theory of Faran [ Ref. 13, Eq. (31 ) ] was 
used to indicate which elementary form factor models were 
appropriate for analyzing a specified target material. This 
theory very accurately predicts the differential backscatter- 
ing cross section for a distant observation point from a single 
target in a fluidlike medium at all ks, and accounts for the 
effects of shear wave motion inside the target. Experimental 
verification of this theory was provided by Faran •3 and by 
Burke et el. using a steel sphere in an agar medium. •4 A form 
factor was calculated from the theoretical cross sections by 
dividing the results by Eq. (15) and setting • = I. 

Morse and Ingard have derived equations (Ref. 9, Eqs. 
8.2.15 and 8.2.16), which describe the scattering of plane 
waves from fluid spheres but ignored the effects of shear 
waves. (Fluid spheres can support compressional wave but 
not shear wave motion.) They were compared with the 
Faran eqt, ations to study the effects of shear waves. With the 
Morse and Ingard equations, form factors for nonrigid 
spheres were calculated using Eq. (16). For comparison, a 
form factor corresponding to the rigid, immovable sphere 
solution was generated from the Faran equations by setting 
the density and longitudinal sound speed of the scattering 
spheres to arbitrarily large values: at least five orders of mag- 
nitude greater than the surounding medium. 

Three target materials were examined in this fashion: 
glass spheres in agar, polystyren6 spheres in agar, and fat 
spheres in a nonfat tissue medium. The first two materials 
were made and studied experimentally (see Sec. IIl); the 
third is an example of a biological tissue and was analyzed 
theoretically. Essential parameters for applying Faran's the- 
ory are density (glass 2.38 g/cm 3, polystyrene 1.06 g/cm 3, 
fat 0.94 g/era3), Poisson's ratio [glass 0.21, polystyrene 
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FIG. 2. (a) Form factors for the fluid sphere model F, the spherical shell model F 2, and the Gaussian model F3; Fa and F 6 are form factors calculated from 
the Faran scattering theory '3 for microspheres made of glass and fat, respectively. (b) Form factor for the rigid, immovable sphere F, is plotted along with 
the fluid sphere model F, (solid lines) and that calculated for glass, polystyrene, and fat microspheres from the Faran scattering theory. '• These data 
include the effects of shear waves generated inside the particle. (el Same as (b), except that the glass, polystyrene, and fat data are calculated from the 
theory of Morse and Ingard. ø These results do not include the effects of shear waves. {d) Form factors for collagen along and across the fibers. The results 
are computed using the Faran theory and the parameters are taken from the work of Cusak and Miller. '? These results show that scattering from collagen 
spheres may be approximated by that of polystyrene. 

0.35, fat 0.4993 (Reft 15) ], and longitudinal speed of sound 
(glass 5570 m/s, polystyrene 2350 m/s, fat 1460 m/s). The 
agar and nonfat tissue materials were taken to be waterlike 
with a density of 1.0 g/cm3; a longitudinal sound speed of 
1540 m/s was used. The resulting form factors for a glass 
microsphere in agar, polystyrene microsphere in agar, and 
fat microsphere in nonfat tissue are plotted in Fig. 2(a) and 
(b) (including the effects of shear waves) and in Fig. 2(c) 
(excluding the effects of shear waves). 

Comparing the curves in Fig. 2 (a), we observed that the 
fat sphere data, labeled F 6, are most similar to the fluid 
sphere model F, as expected, and the fluid sphere Ft and 
Gaussian F3 models are nearly identical for ka < 1. This sug- 
gests that either Ft or F• may be used to interpret scattering 
from some biological media, assuming the fat particles are 
more or less spherical and are the dominant scatterer. Close 
agreement between the glass sphere results/74 and the spheri- 

cal shell model F 2 was surprising considering how poorly F 2 
resembles the rigid-immovable sphere model F, [Fig. 
2(b) ]. It seems that the close agreement is coincidental, due 
more to the elastic properties of glass and agar than to the 
physics of the model. Nevertheless, its simplified form 
makes it useful for studying glass sphere in agar test media 
(See. III). As shown in Fig. 2(b), the glags sphere data F4 
varied significantly from the rigid, immovable sphere data 
F,, and the polystyrene sphere data F5 did not resemble any 
of the models. These differences are mainly due to the pres- 
ence of shear waves. 

Accounting for the effects of shear wave motion inside 
the scatterer is important to accurately describe structural 
properties of solid-particle scattering media using back- 
scatter spectra. When shear waves are not generated or ex- 
cluded from the scattering equations, the measured form 
factor for a scatterer is expected to fall between the two ex- 
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tremes F, and F1, depending on the degree to which the 
pressure field penetrates the target, as shown in Fig. 2(c). 
The agreement between Fr and F7 in Fig. 2(c) suggests that 
glass (tc• 2.7 X I0-is m2/N) may be considered fairly rigid 
as compared to the surrounding agar (tc-42 X I0-•t m2/ 
N). Figure 2(b), however, shows that the presence of shear 
waves in glass significantly changes the frequency depend- 
ence of scattering. The results for glass, polystyrene, and fat 
in Fig. 2(b) were calculated using Faran's equations which 
include the effects of shear waves, and the results in Fig. 2 (c) 
were calculated using Morse and Ingard's equations which 
do not include shear waves. The frequency dependence of 
scattering from polystyrene is dominated by resonances, 
which, for ka < I, decreases the slope of the form factor. 
[Compare F• in Fig. 2(b) with F 8 in Fig. 2(c).] Since the 
form factor for large particles decreased with frequency fas- 
ter than for small particles, using the simple models F•, F2, 
and F 3 when shear waves are present tends to systematically 
result in an overestimation of particle sizes. 

The polystyrene results raise many questions regarding 
the possibility of sizing tissue scatterers. Although scattering 
from fatty structures can occur in soft tissues, the collagen- 
ous tissue stroma is considered to be the dominant source of 

scattering in most tissues. •6 Parameters for coIIagen report- 
ed in the literature are similar to those for polystyrene given 
above, so that shear waves are likely to be a factor. We inves- 
tigated the possibilities of scattering from coIlagen by com- 
puting a theoretical form factor for a collagen sphere sus- 
pended in the nonfat medium described above. The 
parameters given by Cusack and Miller t7 for native collagen 
were used: density ( 1.12 g/cm3), Poisson's ratio (0.42), and 
longitudinal sound speed (2640 m/s along the fibers and 
1890 m/s across the fibers). The resulting form factors are 
very similar to that of polystyrene data Fs, as shown in Fig. 
2(d). The effects of shear waves are discussed further in Sec. 
IV. 

II. FORM FACTOR MEASUREMENTS 

A. The echo signal spectrum 

The ideal conditions for estimating form factors include 
monochromatic plane waves incident on an isolated volume 
containing scatterers. In practice, a broadband pulse from a 
focused transducer is used to probe an extended medium, for 
example, the body. Consequently, an expression more gen- 
eral than Eq. ( 1 ) is needed to describe scattering under prac- 
tical conditions. An expression for the scattered pressure at 
frequency co due to the incident pressure P,o,' is given by 9 

p•,• (r,t) = fv[k (r')Poi (r',t) G,o (r,r') 
+ l/p(r')V'po, i(r',t).V'G•(r,r') ]d3r ', (23) 

where the Green's function is Go (r,r') = exp(ik Ir - r'l )/ 
(4rr I r - r'l) and lr - r'[is the distance from the observation 
point to points in the scattering medium V. In writing Eq. 
(23) and substituting Po• for Po, we have assumed that the 
scattered pressure is small compared to the incident pres- 
sure, i.e., the Born approximation, ø and that the incident 

pressure is of the time harmonic form exp( -- icot). Equation 
(23) reduces to Eqs. (1) and (3) for incident plane waves 
and farfield observation. 

We wish to apply Eq. (23) to the analysis of back- 
scattering from a single-element focused transducer operat- 
ed in pulse-echo mode. In this situation, the incident pres- 
sure at frequency co is given by the expression '•'•9 

P •i (r,t) = ipocokA (r,k) U ( co ) e - i,o,, (24a) 
where the, radiating transducer surface is assumed to move 
uniformly with speed U(co)exp(-i cot). The product 
U(co)exp( -- icot)A (r,k) has been called the velocity poten- 
tial, 1• where 

I • e iklr r'l ,4 (r,k) = • ,, I r _ r'-•-•- dAo, (24b) 
and A o is the radiating surface area of the transducer ele- 
ment. 

The force on the transducer element f,o (t) is found by 
integrating the scattered pressure over the transducer aper- 
ture 

fo(t), = f p,•(r,t)dAo. 
Since Eq. (24b) gives 

G(r,r')dS = 1A(r,k), 2 

then 

f,o(t) [k2y•(r )p,o,.(r, ) (,k) 

+ yp (r')V'p•,i (r',t).•',4 (r',k) ]d 3r' 

= •-ipocokU(co)e-"ø'fv[key•(r')A2(r',k) 
+ ?,p(r')VM(r',k).V'.d(r',k) ]d3r '. (25) 

The second form is found by using Eq. (24a) to definep,o•. 
The frequency dependence of the compressibility and 

density source terms is the same when 

- k 2,4 2(r',k) = V'•I (r',k)' V','/(r',k). 

For plane waves, the above relation is always true. However, 
Ueda and Ichikawa 2ø have shown that this relation also 
holds for focused and nonfocused transducers when the 

transducer-to-target distance is greater than the transducer 
diameter. Lizzi et al. have arrived at the same conclusion by 
showing that the cross-range component of V'p,o•(r',t) is 
small co•npared with the range component. • 

Consequently, the integrand in Eq. (25) is approxi- 
mately equal to k 2//(r, ),,1 2(r',k), and the force on the trans- 
ducer element reduces to 

fo(t) : •ipocok3U(co)e-•o, f/2(r,,k)•/(r,)d3r ,, 
(26) 

where y(r') = ?'•(r') - • (r'). As with Eqs. (1) and (3), 
two powers of the wavenumber k result from the compress- 
ibility and density source terms; however, an additional 
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power ofk has apparently been introduced into Eq. (26) by 
the use of a transducer beam. The relation between the trans- 

ducer beam and the frequency dependence of the echo spec- 
trum is discussed in Sec. IID. 

The echo signal s•, (t) recorded in an experiment is giv- 
en by multiplying Eq. (26) by the acoustoelectric transfer 
function T(co) and a temporal gating functiong(t), and inte- 
grating over all frequencies. The result is 

s•(t) -----g(t T(co)f•,(t)dco 

X 2(r',k)g(r')y(r')d3r'. (27) 

In the above equation, we have expressed the temporal gate 
g(t) as a spatial gate g(r) without loss of generality. The 
factors A 2(r,k) and g(r) define the scattering volume, 
hence, the second integral is over all space. 

The measured echo spectrum S• (o•) is the Fourier 
transform of the echo signal: 

$ • (o•) = •ipoCo k 3T(co) 

• 2(r',k)g(r')y(r')d3?. 

Defining the factor C(k) = • pocoT(co) U(co), the spectrum 
is written as a function of the spatial frequency variable k: 

Srn(k) = ik3C(k) 2(r',k)g(r')y(r')dSr'. (28) 

B. Measurements near the transducer focus 

Often constraints are placed on the experimental condi- 
tions to further simplify the expressions. For example, we 
confine our measurements to the focal zone of a weakly fo- 
cused transducer, where the phase front of the incident beam 
is nearly planar and normal to the beam axis. In the focal 
zone, the integral of Eq. (24b) may be simplified to the well- 
known result of O'Neil'S: 

,4 (r,k) = (`4o/2•rr)eikrH(O), (29) 
where 

H(O) = [2J•(kao sin O)/kao sin 0] 

is the directivity function, J• is a Bessel function, r and 0 are 
the position coordinates defined with respect to the center of 
the transducer (Fig. 3), ao is the transducer radius, and`4o is 
its area. 

With the assumption of local plane waves, the directiv- 
ity function may be specified entirely in the (x,y) plane, i.e., 
H(O) • H(x,y), and the gating function may be approximat- 
ed by a range gate, i.e., g(r) --g(z) (Ref. 2). Also, if the 
beam width is narrow compared to the transducer-scattering 
volume distance, then r is approximately R • + %, where R, 
is the on-axis distance from the transducer to the onset of the 

gate and re is the distance from the onset of the gate, on axis, 
to points in V (Fig. 3). In that case, A (r,k) is given by 

2id. r•• ,• • z 
R• R a 

FIG. 3. Transducer geometry in the y,z plane. 

`4 (r,k) _• (`4o/2n'R • )ei•n'ei•r"H(x,y). (30) 

Combining Eqs. (28) and (30) yields an expression for 
the spectrum of the echo signal from the focal region of the 
transducer: 

i`4 •k 3C(k)e ak•' foe Sr• (k) __ (2•rR•)2 j_ •' H•(xo'yo)g(zø)Y(rø) 
X ean'" d 3ro . (31) 

Attenuation along the beam path may be included by defin- 
ing a complex wavenumber k = co/c o + ict(co) where a(co) 
is the frequency-dependent attenuation coefficient. 

C. Spectral normalization 

The spectrum in Eq. (31 ) reflects the frequency depend- 
ence of both the instrumentation and the tissue. Spectral 
normalization is a standard procedure in acoustic measure- 
ments for removing instrument effects and obtaining spec- 
tral estimates that are representative of the scattering medi- 
um. The spectral normalization method used in the present 
work follows that of Lizzi et aL 2 

The first step in the normalization process is to measure 
the spectrum for a reference target; for example, a planar 
surface may be placed at the focus, perpendicular to the 
beam axis. The source function for a plane reflector is given 
by the product 

Y(ro) = Y'h(zo -- z• ), (32) 

where •' is the reflection coefficient for the surface and 
h(zo -- z• ) is a step function located at the center of the gate 
z c = (R 2 -- R•)/2 (see Fig. 3). Substituting Eq. (32) into 
Eq. (31 ) and performing an integration by parts gives the 
reference signal spectrum So 

So(k) = (Aok /2•rR, )2 [ y,C( k )e,en(n, + "•/2 ] 

Xffff•H2(xo,Yo)dxodyo, 
where we have defined g(% ) = 1. It may be shown using 
Parseval's theorem 2• that the integral of the squared direc- 
tivity function is equal to 

f f; H•(xo'Yo)dxodyo-- •2(R' q-z•) • • Ao Ao 
so that the reference spectrum reduces to 

So(k) = -•Aoy' C( k )e a&•a' + •'• (33) 
The normalized echo spectrum S is then defined from 

Eqs. (31) and (33) as 
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S(k) = (ff /2)eak•(S,,/So) 

_ iAok 3 fj (2rrR•)2 H2(xo'Yo)g(Zo)7/(ro)eak"'d3rø' oo 

(34) 

In practice, Eq. (34) is multiplied by exp [ - 2a ], where a is 
the difference in attenuation coefficients between the media 
for the measured echo signals and reference echo signals, 
and k is taken to be real. Improperly accounting for attenu- 
ation in the beam path can result in errors in determining the 
frequency dependence of backscatter. 

The objective of spectral normalization is the elimina- 
tion of C(k) from the spectral estimate. Here, C(k) ex- 
presses the frequency dependence of the pulse spectrum and 
the acoustoelectric sensitivity of the transducer. 

D. The power spectrum 

The backscattered power is estimated from the mean- 
square of the spectrum S averaged over many spatial loca- 
tions. 23 For statistically homogeneous media, the average 
normalized power spectrum IV for a region of interest 
(ROI) is given by i i 

IV(k): -• ,=•l IS,( k,Z, ) l 2, (35) 
where Nt is the number of gated waveform segments of 
length Zt. The average function W approaches the expected 
power spectrum as N• approaches infinity, assuming the sig- 
nals are statistically independent. Equation (35) is analo- 
gous to Eq. (6). 

The normalized power spectrum in terms of Eq. (34) is 
given by 

Agk6 f f H2(xo,Yo)H2(x,,y,)g(Zo) W(k)- (2•RI) 4 
Xg(zj)(y(ro)y(r•))e a•('"") d3rod3ru (36) 

The average (7/(ro)y(rj)) results from averaging over the 
ensemble of waveform segments, as in Eq. (35). The direc- 
tivity and gating function are nonstochastic, and therefore 
have been taken outside the averaging operation. 

As in Eq. (8), weak stationarity is assumed, which 
means that the autocorrelation function for the medium 

By(ro,rl) = (y(ro)7/(r•)) is a function of only the differ- 
ence variable Ar = r o -- r•. Rewriting Win terms of sum and 
difference variables u = (r o + r• )/2 and Ar = r o -- r• (Reft 
4), the power spectrum may be expressed as the Fourier 
transform of the product of autocorrelation functions: 

Ao•k• IV(k)- (2-•-,i 4 
X e aaa' d 3Ar, (37) 

where 

-- T,Uy 

© Az 

Bs (Az) : f' o•g(Uz + -•-)g(uz - •)du•. 
B u is the autocorrelation of the pulse-echo transducer-beam 
directivity, and B• is the autocorrelation of the range gate. If 
B r becomes negligibly small before either Bu or Bg changes 
significantly, then we can assume Bu and Bg are constants 
given by their value at zero lag. TM The power spectrum is 
then equal to 

'4•k• f• W(k)_ (0,0)B• (0) Br(Ar)ea•a'd3Ar '2•'R I ) 4'BH 
__ B u (0,0)Bg (0) F2(2k), (38) 

where the integral above has already been defined for inco- 
herent scattering in Eqs. (10) and (12) as (2•)6hF2(2k). 
Since Bn (0,0) and Bg (0) can easily be calculated for the 
experimental conditions described above, Eq. (38) may be 
used to estimate F2(2k), and hence the form factor F(2k), 
from a measurement of the normalized power spectrum. 

Ueda and Ozawa 22 have reduced Bn(0,0) assuming 
ka o• 1, to 

Bu (0,0) = ,u•)du• du• 

= 2dR, •2 • 4 

Ao 
The integral in Eq. (39) was evaluated numerically to give a 
value of 0.92. Notice that although the transducer beam 
seems to ,contribute the factor k 2 to the echo signal power 
spectrum,, •. (38), the quantity Bn (0,0) is propo•ional to 
k - 2. The net result is that the transducer beam does not influ- 
ence the •equency dependence of the normalized power spec- 
trum. 

In our experiments, the echo signal is gated with a Han- 
ning window (Ref. 11, •. 11.108) given by the expression 

g(z) = [ •ll - cøs(2rrzø/2z• )l' R,<zo<R2, 
10, otherwise. 

The corresponding autocorrelation function may b& evaluat- 
ed to give: 

Bg(O)=f•©g•(u•)du•=O.75z.. (40) 

Using Eqs. ( 3 8 )- (40), the normalized power spectrum can 
be reduced to 

W( k ) _• ( 0.34Aoz½/R • ) (2rrk)4hF2 (2k) 

_• ( 0.34Aoz½/R • (41) 

The experimental parameters Ao, z½, and R• will scale the 
magnitude of W, but do not modify its frequency depend- 
ence. The frequency dependence of the normalized power 
spectrum depends only on the backscatter coefficient •r o. 
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E. Parameter estimation 

The estimated form factor F(2k), which accounts for 
attenuation losses, is computed from Eqs. (15), (16), and 
(41): 

2 ...... 4ct(R• +z½) •(2k) = •b/ao= (0.73R i /AoZc•7 o) W( tc )e . 
The result may be grouped into three factors: 

•(2k) =( 6.5R • • (•ar• ø ) _ ,(k 
\ •4ozc / 

(42) 
A 

The first two factors scale the third, such that 0<F< 1. The 
first factor is easily calculated from the geometry of the ex- 
periment. The second factor describes unknown properties 
of the medium that we seek to determine: the number density 
of particles •, size a, and the average scattering strength per 
particle •o. The third factor describes the frequency depen- 
dence of the power spectrum that is due to the geometry and 
the internal degrees of freedom of the particle under the 
physical boundary conditions. The third factor can be deter- 
mined independently of the first two by computing the nor- 
malized power spectrum IV(k), accounting for k 4 and at- 
tenuation as in Eq. (42), and rescaling the result to have a 
value of one at k = 0. With the elimination of the first two 

factors and the assumption that the appropriate scattering 
function (i.e., form factor model) is known, particle sizes 
may be estimated independently of the other unknown prop- 
erties. 

The strategy for estimating particle sizes involves stan- 
dard least-squares methods. First, a scattering model is cho- 
sen, e.g., Eqs. (18), (19), or (22). Next, a set of model form 
factors is calculated and stored in a look-up table (LUT). 
The set contains the functions F(2k) at a range of particle 
sizes for which the chosen model is valid; there is one func- 
tion F for each particle size a. Finally, the data, i.e., third 
factor in Eq. (42), are "compared" with each model F(2k) 
in the set (Fig. 4). The size estimate & is determined from the 
model with the minimum average squared deviation 
(MASD): 

MASD = min 2 (43) 

where X = 10 log [ IV(k ) exp{4a ( R 1 + z½ ) }/k 4F( 2k ) ] and 

The sums are over all frequencies in the bandwidth of the 
data. The quantity Xis the ratio of the measured form factor 
to the modeled form factor, expressed in decibels (dB). Sub- 
tracting the average X from X accomplishes the rescaling 
discussed in the previous paragraph. 

Once • is determined, its value can be used in Eq. (42) to 

estimate the average net scattering strength •o-- It is con- 
venient to use X for this purpose. Converting X from dB 
gives the geometric mean exp(0.2303X) which equals the 
inverse product of the first two factors on the right side of 
Eq. (42). The average net scattering strength is therefore 
approximated by 

•o • (6.5R •/Aozc&6)exp(0.2303•). (44) 
Without additional information • and •o cannot be deter- 
mined independently. 

III. TESTS OF THE METHOD 

A. The experiment 

The methods for estimating the average particle size and 
the average net scattering strength •o were tested using 
well-defined test materials. Each material contained either 

glass or polystyrene microspheres. In both cases the micro- 
spheres were randomly positioned in agar, and the distribu- 
tion of diameters found in any one sample was strongly 
peaked about the mean so that a single particle size could be 
assumed. Microsphere diameter distributions were mea- 
sured by the manufacturer using an optical microscope with 
an eyepiece reticle calibrated with an NBS certified stage 
micrometer.•4 Sample materials were formed into a cylindri- 
cal shape 2.5 cm thick and 7.5 cm in diameter. Physical 
properties of the component materials are given in Sec. I C. 
Table I is a list of the samples by number, along with values 

o -10 

• -15 
[-• 

-20 -, [ .... I .... I .... I .... I.. ,- 
2 3 4 5 6 

Frequency (MHz) 

FIG. 4. Measured (noisy line) and modeled (smooth line) form factors for 
a 105-/.•m-diam glass microsphere sample (Table I) scanned using a 5-MHz 
broadband transducer (Table II). The spher/cai shell model F: with a 95- 
/.•m-diam sphere size •ave the best fit (MASD) to the data over the trans- 
ducer bandwidth. 

TABLE I. A summary of the properties of ten scattering phantoms used to 
test the method. The first nine contain glass microspheres (g); the tenth 
contains polystyrene microspheres {p). 

Nominal sphere Number Speed of 
diameter density sound Attenuation 

Sample (ttm) (ram -3 ) (m/•) (d[l/cm) 

I 40 + 3(g} 14.6 1544 0.17f 1'4 
2 41 + 2(g) 24.2 1540 0.17f t': 
3 41 4- 2(g) 24.2 1542 0.19f• z 
4 75 + 3 (g) 3.00 1543 0.26f •'• 
5 85 _+ 3(g) 12.1 1548 0.17f •'• 
6 105 + 4(g) 1.46 1547 0.18f • • 
7 120 + 4(g) 4.35 1545 0.17f • a 
8 175 ___ 6(g} 0.15 1545 O. 17f L• 
9 175 4- 6(g) 0.73 1544 0.20f • • 

10 81 4- 4{p) 4.2 1565 0.17f •'• 
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TABLE II. Characteristics of transducers used in the phantom measure- 
ments. 

Measured 12-dB Measured 

Nominal center peak frequency bandwidth focal length 
Transducer frequency diameter (MHz) (MHz) (ram) 

I 2.25 MHz/19 mm 2.2 1.7 99 

2 3.5 MHz/13 mm 4.0 4.0 73 
3 5.0 MHz/13 mm 4.6 3.7 90 
4 7.5 MHz/9 mm 7.8 4.0 36 

realized power spectrum W(k) was determined using Eq. 
(35). 

Many of the samples were covered by a plastic mem- 
brane to retard desiccation. This 50-•m-thick membrane 
(p- 1.7 g/cm3,cL -2500 m/s) introduced a significant fre- 
quency-de:pendent loss at the water-sample interface. This 
loss was accounted for by dividing W(k) by the square of the 
intensity transmission coefficient calculated for a thin layer 
at normal incidence (Ref. 19, Eq. 6.13). 

of mean sphere diameter, number density, speed of sound, 
and bulk attenuation. Attenuation and speed of sound were 
measured using a broadband, through-transmission tech- 
nique. 2s 

Data were obtained using one of four focused trans- 
ducers whose properties are listed in Table II. Samples were 
placed in distilled water at 22 øC and oriented such that the 
axis of the sample cylinder was parallel to the beam axis. 
Each sample was positioned in the focal zone of the trans- 
ducer, where 25 pulse-echo waveforms were recorded. The 
transducer was translated 5 mm lateral to the beam axis be- 

tween recordings. A rectilinear scanning motion was used to 
span a sample cross-sectional area of approximately 400 
mm 2. Waveform segments were recorded at 25 Msamples 
per second, each 512 points long. Waveform segments were 
multiplied by a Hanning window, • the spectrum for each 
segment was computed using an FFT algorithm, and the 
results were averaged to give the sample spectrum. A refer- 
ence spectrum was computed from an average of ten wave- 
forms recorded using a Lucite plate also positioned in water 
at a distance corresponding to the center of the gated region 
(R• + zc ). From the sample and reference spectra, the nor- 

B. Results 

Form factors were estimated from recorded waveforms 

over a 12-dB bandwidth and fit to model functions. The min- 

imum ave:rage squared deviation Eq. (43) was the criterion 
used to determine the best fit and hence the most likely parti- 
cle size. For example, see Fig. 4 where the 105-•m-diam 
glass microsphere sample was scanned at 5.0 MHz (ka • 1 ). 
The data (noisy line) fit the 95-/tm model (smooth line) 
with the minimum averaged squared deviation (MASD). 
Model functions between 20 and 500•m in 1-btm increments 
were calculated and stored in an LUT for comparisons with 
the data. These size estimates were then used in Eq. (44) to 
compute scattering strength estimates. All results are sum- 
marized in Table III. 

Values reported in column A of Table III were deter- 
mined by liltting F2 functions, the spherical shell form factor 
model, to the data. Here, F2 was chosen because it closely 
agreed with the form factor for glass microspheres computed 
using the theory of Faran [ Fig. 2 (a) ]. Overall, the estimated 
and nominal sphere diameters agree to within 20%. The 
scattering strength estimates were highly variable, but, in 
general, were correlated with the nominal values. 

TABLE III. Estimates of scattering-particle size (2h) and the scattering strength (h•) are :•ummarized below. The spherical shell form factor model [Eq. 
(19) ] was used to calculate the results of column A, and that of Faran (Ref. 13 and Sec. I C) was used for column B. 

Results A Results B 

Nominal sphere Estimated sphere Estimated sphere 
diameter Nominal •o Center diameter Estimated • diameter 

Sample (microns) (mm 3) frequency (ka) 2• (/zm) (mm •) 2• (ttm) 
Estimated 

(mm •) 

glass 
1 404--3 
2 41-3-_2 
3 4.14-2 
4 75+__3 

10 

854--3 

105 q- 4 

120 +_ 4 

175ñ6 
175 q- 6 

polystyrene 
814-,4 

40 7.5 MHz(0.61 ) 40 4-- 7 42 
66 7.5 MHz(0.61) 42 4-- 8 78 
66 7.5 MHz(0.61 ) 49 q- 5 21 
8.2 5.0 MHz(0.76) 73 +- 32 '" 

•3.5 MHz(0.61) 102 4__ 12 20 
33 t 5.0MHz(0.87) 87 4-- 11 26 
4.1 5.0 MHz(1.07) 95 q- 9 5.2 

3.5 MHz(0.86) 111 4- 9 7.5 12 5.0 MHz(1.22) 95 q- 8 13 
0.15 2.25 MHz(0.80) 169 4__ 33 ... 
0.73 2.25 MHz(0.80) 186 --4-_ 30 '" 

•2.25 MHz(0.37) not not 
0.93 • 5.0 MHz(0.83) applicable applicable 

38 47 
37 120 
41 71 
73 '" 

84 54 
87 26 
105 2.1 

115 10 
113 8.2 

165 ... 

170 -.. 

86 2.5 

83 6.6 
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Values reported in column B of Table III were deter- 
mined by fitting the data to form factors computed using the 
theory of Faran, as described in Sec. I C. Because this theo- 
retical model is valid at all ka and includes the effects of 

shear waves, we expected closer agreement between the esti- 
mated and nominal values. We found that, for the glass mi- 
crosphere samples, the accuracy of the size estimates im- 
proved to within 10%, but observed no improvement in the 
accuracy of scattering strength estimates. This scattering 
model allowed us to estimate the size of the 81-/.tm polysty- 
rene microspheres in sample 10 to within 10%. The frequen- 
cy dependence of the estimated form factor data for the poly- 
styrene sample may be compared to that of the Faran model 
in Fig. 5, from 1.5 MHz (ka=0.25) to 9.5 MHz 
(ka = 1.6). Pictured is the best fit between the data and the 

model, which occurred at 83/•m. Three transducers were 
used to span this range of frequencies. The magnitude of 
each data segment was adjusted in order to give the appear- 
ance of a continuous data set. 

The uncertainties in particle size estimates listed in col- 
umn A were approximated by the equation 

var (X) = var(2fi)( 
\ c9(2a)/2a.k, ' 

where var(X) is the variance in X, defined below Eq. (43), 
and var(2•) is the variance in the size estimate 2& The last 

factor is the square of the derivative of X with respect to the 
particle size, evaluated at the estimate 25 and at the wave- 
number corresponding to the center frequency of the trans- 
ducer 

The estimated variance in X is given by a rescaled Eq. 
(43): var(X) = rn/(m- 1) MASD, and, for the data in 
column A, 

c9X -- --10 c9 logF 2. 
•9(2a) 8(2a) 
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FIG. 5. Comparison between form factors measured for the 81-/•m polysty- 
rene microsphere sample (noisy lines) and modeled using the scattering 
theory of Faran •3 and assuming 83-#m-diam spheres (smooth line). Three 
transducers were used to span the range of 1.5-9.5 MHz as indicated. A 
2.25-MHz transducer was used to obtain data from 1.5 to 3.2 MHz, a 5.0- 
MHz transducer from 2.8 to 6.5 MHz, and a 7.5-MHz transducer from 5.5 
to 9.5 MHz. The three data segments were scaled individually to give the 
appearance of a continuous line. No modifications to the frequency depen- 
dence of the data were made. 

Therefore, the standard deviation in the particle size esti- 
mates in column A was computed using 

s.d.(2•) = m MASD 10 logF 2 
1 -- m •9(2a) 

This expression is only approximately true since the deriva- 
tive is a weak function ofk and, in practice, also depends on 
the uncertainty in attenuation. 

Errors in size estimates that are generated by an uncer- 
tainty in the linear attenuation slope are shown in Fig. 6. 
Assuming the actual attenuation slope was 0.5 dB/cm, val- 
ues between 0.0 dB/cm and 1.0 dB/cm were used to com- 

pute the size estimates. Overestimation of the attenuation 
slope resulted in a larger error than underestimation, as seen 
in Fig. 6, and the magnitude of the error depended on the 
value of ka. The ka dependence observed results from low 
measurement sensitivity: The frequency dependence of scat- 
tering is not greatly affected by particle size for small values 
ofka. Because of the low attenuation in the test samples, the 
uncertainty in attenuation estimates was not a significant 
factor in the results of Table III. 

IV. DISCUSSION 

Our intent was to use elementary scattering functions to 
describe the microscopic structure of random inhomogen- 
eous media. Experimental results using glass-in-agar media 
show it is possible to estimate an average particle size and the 
scattering strength. The accuracy of the measurements, 
however, depended on the choice of correlation model (form 
factor) for the medium and the experimental conditions. 

If the scattering medium does not support shear wave 
propagation and if data are acquired in the range ka < 1, the 
choice of model is not critical. At long wavelengths, all the 
models converge. Yet at very long wavelengths, the frequen- 
cy dependence of scattering, as measured by the form factor, 
is only slowly varying with particle size, and that means re- 
duced measurement sensitivity in the presence of noise. A 
compromise between the trade-offs in sensitivity and the 

0.50 

0.25 

0.00 

-0.25 

-0.50 

-0.75 

-1.00 
0 0.2 0.4 0.6 08 

Lin. Att. Slope (dB/cm/MHz 

FIG. 6. Plots of the variation in particle size estimates with an uncertainty 
in the linear attenuation slope estimate. The results depend on the value of 
ka, and span the range of attenuation values typical in soft biological tissues. 
The errors for ka = 1.22 and ka = 1.07 are identical. Lower values of ka 
give rise to larger errors. 
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need to use a more detailed model is to estimate particle sizes 
in the transition region where 0.5 < ka < 1.2. In the 1.0- to 
10.0-MHz range of frequencies used in medical ultrasound, 
this corresponds to particle sizes between 20 and 500/•m. 

If shear waves are generated in the scattering particles, 
as was the case for the polystyrene microsphere sample, then 
a more detailed scattering model is needed to accurately de- 
scribe the scattering structure. When the Faran theory was 
used in our analysis (column B, Table III), the accuracy of 
particle size estimates increased for the glass samples, and it 
was possible to obtain size estimates for the polystyrene sam- 
ple, which has a significant shear wave component. The lack 
of agreement between the model and the data observed in 
Fig. 5 at high frequencies is likely due to small uncertainties 
in the elastic properties of polystyrene used to generate the 
model function, e.g., density, sound speed, and Poisson's ra- 
tio. In general, the elastic properties for a material depend on 
the size and shape of the material: we used bulk properties, as 
did Faran. 

Faran showed how to predict when shear waves are sig- 
nificant. He demonstrated that the complicated wave struc- 
ture that constitutes resonance phenomena, i.e., vibrations 
inside the scatterer, occurs at lower frequencies with shear 
waves than without shear waves. With relatively incom- 
pressible materials such as glass, all resonances occur at fair- 
ly large values ofka ( > 1.5) (see Fig. 17, Reft 13). There- 
fore, in the range 0 < ka < 1.2, the variation between the 
form factor for glass spheres in agar and the rigid immovable 
sphere is not very great [see Fig. 2(b)]. As the scatterer 
material becomes more compressible, such as with polysty- 
rene, the resonances associated with shear waves move to 

lower values of ka. These resonances significantly change 
the frequency dependence of scattering. This change is 
shown in Fig. 2 (b) for polystyrene as an increase in the cur- 
vature of the form factor for ka < 1. The increased curvature 

results in an overestimation of particle sizes and a concomi- 
tant underestimation in scattering strength. 

Estimates of the scattering strength were generally ac- 
curate to within a factor of 2, and the accuracy did not obvi- 
ously depend on the model used. The uncertainty in this 
measure is greatly influenced by errors in the particle size 
estimate. Small errors in the estimate h translate into large 
errors in the scattering strength, since •o • h-6. This meth- 
od for estimating the scattering strength is overextended in 
the Sense that two unknowns are determined from one data 

set. 

Describing the scattering structure of biological tissues 
will be more difficult than it was for the agar samples. What 
is known about many tissues is that the scattering is domi- 
nated by collagen, •6 and, although the correlation function 
for tissue is unknown, the Gaussian model has provided a 
consistent description of tissue structures. 3'•-• The relevant 
elastic properties of collagen available in the literature •7 sug- 
gest that, like with polystyrene, shear waves play a signifi- 
cant role in scattering. Therefore, if we can model tissue 
structures with simple shapes such as spheres or cylinders 
and as the elastic properties become better defined, the scat- 
tering theory of Faran would be the most accurate model for 
describing tissue structures. Acoustic microscopy studies 

may eventually provide this information. Until that time, 
simple scattering functions, such as Eqs. (18), (19), and 
(22), may be useful in probing tissues for relatioe changes in 
the collageneous tissue stroma that charaterize many patho- 
logical processes. In images formed using these measures, it 
is the relative, rather than the absolute changes in tissue 
properties. that provides the contrast needed for detectabil- 
ity. Methods that are highly sensitive to small changes in 
tissue structures can provide an important diagnostic tool 
for tissue characterization. 
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